CSE 142, Winter 2008

Programming Assignment #8: Critters (20 points)
Due: Thursday, March 13, 2008, 8:00 PM

adapted from Critters assignment by Stuart Reges, with ideas from Sieve Gribble

This assignment will give you practice with class&sirn inBear . j ava, Li on. j ava, Ti ger . j ava, andHusky. j ava.
There are several supporting files to downloadhencburse web site. Runi t t er Mai n. j ava to start the simulation.

Program Behavior:
You will be provided with several classes that iempént a graphical "~ .~ - Fa .
simulation of a 2D world with many animals movingand in it. You will | . ¥+ -« Yoael . s
write a set of classes that define the behaviothose animals. Different ~ =+ , * . ’

kinds of animals move and behave in different wayss you write eachj:* - * | R
class, you are defining those unique behaviorgedgh animal.

-/ CSE 142 Critter Safari: jackdaw 192.168.1.101 192.168.1.102 192.168.222.... | |OJEd

The critter world is divided into cells with intageoordinates. The world is/ : o s / g
60 cells wide and 50 cells tall. The upper-lefl ¢as coordinates (0, 0), - , R L R

X increases to the right and y increases downward. “
Spe 3 7moves

Movement
On each round of the simulation, the simulator askeh critter object which direction it wants tovaeo Each round a
critter can move one square north, south, east, westay at its current location. The world badite size, but it wraps
around in all four directions (for example, movieast from the right edge brings you back to thieddge).

This program will probably be confusing at firsedause this is the first time where you do notemtiterai n method
(the client code that uses your animals), so yodeds not in control of the overall program'’s exem. Instead, your
objects become part of a larger system. You migdrtt to have one of your critters make several m@teonce using a
loop. But you can't do that. The only way a erithoves is to wait for the simulator to ask it #osingle move and return
that move. This experience can be frustratingjthsta good introduction to object-oriented pr@ming.

Fighting

As the simulation runs, animals can collide by mgwonto the same location. When two animals callidey fight. The
winning animal survives and the losing animal ikeki. Each animal chooses to roar, pounce, otdtiigs opponent
(represented in the code by values namedck. ROAR, At t ack. POUNCE, andat t ack. SCRATCH). Each of these attacks is
strong against one other attack (e.g. roar bea#dckd and weak against another (roar loses togeunThe following
table summarizes the possible choices and whiamanwill win in each case. To help remember whiglats which,
notice that the starting letters and ratings_offr punce, sratch" match those of dck, mper, sissors." If the animals
make the same choice, the winner is chosen at nando

Critter #2
Attack. ROAR | Att ack. POUNCE | Att ack. SCRATCH
At t ack. ROAR random winner #2 wins #1 wins
Critter #1 | At t ack. POUNCE #1 wins random winner #2 wins
At t ack. SCRATCH #2 wins #1 wins random winner

Eating

The simulation world also contains food (represeimgthe period character,") for the animals to eat. There are pieces
of food on the world initially, and new food slowfyrows into the world over time. As an animal mavé may
encounter food, in which case the simulator wik gsur animal whether it wants to eat it. Differd&inds of animals
have different eating behavior; some always eat,atihers only eat under certain conditions.

Every time one class of animals eats a few pietésoal, that animal will be put to "sleep" by thienslator for a small
amount of time. While asleep, animals cannot mawe, if they enter a fight with another animal ytiéll always lose.

Scoring
The simulator keeps a score for each class of anghawn on the right side of the screen. A ctassbre is based on
how many animals of that class are alive, how nfoold they have eaten, and how many other animaishhve killed.

1of4

Provided Files:

Each of the four classes you'll write will extendrh a superclass namedi tter. This is an example of inheritance,
which is discussed in detail in Chapter 9 of theldeok. The inheritance makes it easier for oulect talk to all of your
critter classes, and it also helps us be sureathgour animal classes will implement all of thetmods we need. But
don't worry; to do this assignment you don't needrtderstand much at all about inheritance. Ydasscheaders should
indicate the inheritance relationship by writing ends Critter in their header, like the following:

public class Bear extends Critter {

}
Thecritter class contains the following five methods, whicuynust write in each of your four classes:

* public boolean eat()
When your animal encounters food, our code caitsah it to ask whether it wants to eatue) or not (al se).

e public Attack fight(String opponent)
When two animals move onto the same square ofritietgey fight. When they collide, our code cdhgs on
each animal to ask it what kind of attack it wanotsise in a fight with the given opponent.

* public Color getColor()
Every time the board updates, our code calls thigour animal to ask it what color it wants to lvawdn with.

* public Direction getMyve()
Every time the board updates, our code calls thigaur animal to ask it which way it wants to move.

* public String toString()
Every time the board updates, our code calls thigour animal to ask what letter it should be drasronscreen,

Just by writingext ends Critter as shown above, you receive a default versiohedd methods. The default behavior
is to never eat, to always forfeit in a fight, ®etthe color black, to always stand still (a molvei @ect i on. CENTER), and
atostring of "?". If you don't want this default behavior, you oarite the methods shown above in your class to
replace the default behavior with your own. Thisalledoverriding the default behavior.

For example, below is a critter class calfedne. Stone objects are displayed with the letter S, are gmagolor, never
move, never eat, and always choose to roar inhd. fiyour classes will look like the class belowcept with fields, a
constructor, and more sophisticated behavior cdttee that thest one does not need to write aat or get Move method;
it uses the default behavior for those operations.

i mport java.awt.*; /1 for Color

public class Stone extends Critter {
public Attack fight(String opponent) {
return Attack. ROAR;
}

public Col or getColor() {
return Col or. GRAY;
}

public String toString() {
return "S";
}

20f4

Critters to Implement:

The following are the four critter classes you witiplement.

Each class must only have one cortsiruand that

constructor must accept exactly the parameter@riteed in the table. For random moves, each plesshoice must be
equally likely. You may use eithelrandomobject or thevat h. randommethod to obtain pseudorandom values.

Bear
Constructor public Bear(boolean grizzly)
color brown (new Col or (190, 110, 50)) for a grizzly bear (whegri zzly iStrue),

white (Col or . WHI TE) for a polar bear (when grizzly il se)

eating behavior

always returnsr ue

fighting behavior

always scratch

movement behavior

alternates between north and west in a zigzagrpatte

toString

(first north, then west, then north, then wes}, ...
o

TheBear constructor accepts a parameter representing/pleedf bear it ist rue means a grizzly bear, andi se means
a polar bear. Yougear object should remember this and use it later wihemnget Col or is called on th&ear. If the
bear is a grizzly, return a brown colom@w Col or (190, 110, 50)), and otherwise a white colatof or . WH TE).

Lion
constructor public Lion()
color red (ol or. RED)

eating behavior

returnst r ue if this Li on has been in a fight since it has last eaten
(if fi ght has been called on thison at least once since the last caltén)

fighting behavior

if opponent is @ear ("B"), then roar; otherwise pounce

movement behavior

first go south 5 times, then go west 5 times,
then go north 5 times, then go east 5 times

(a clockwise square pattern), then repeats

toString L

Tiger

constructor public Tiger(int hunger)
color yellow (Col or. YELLOW

eating behavior

returnst r ue the firsthunger times it is called, antlal se after that

fighting behavior

if this Ti ger is still hungry (if a call teat would returnt r ue), then scratch;
otherwise pounce

movement behavior

moves 3 steps in a random direction (north, sadht, or west),
then chooses a hew random direction and repeats

toString

the number of pieces of food thisger still wants to eat, asf@ri ng

.
I_

The Ti ger constructor accepts a parameter for the maximumbeu of food thisTi ger will eat in its lifetime (the
number of times it will returar ue from a call toeat). For example, @i ger constructed with a parameter value of 8 will
returnt r ue the first 8 timesat is called and al se after that. Assume that the value passeddoger is non-negative.

Thet oSt ri ng method for ari ger should return th&i ger 's remaining hunger; in other words, the numbdmoés that a
call toeat that would returnrue for thatTi ger. For example, if aew Ti ger (5) is constructed, initially thati ger's
t oSt ri ng method should returns”. After eat has been called on thetger once, calls t@ oSt ri ng should return 4",
and so on, until th&i ger is no longer hungry, after which all callsttest ri ng should returno”.

Husky

constructor

publi ¢ Husky()

all other behavior

you decide

You will decide the behavior of youusky class.Your constructor must accept no parameters, as shown above.

30f4

Husky Class:

Part of your grade will be based upon writing dreatind non-trivial behavior in yowusky class. The following are
some guidelines and hints about how to write aer@stingHusky. There are additional methods that each crittessc
can use through inheritance from thetter class. YouHusky may want to use these methods to guide its behavio

* public int getX() public int getY()
Returns your critter's current x and y coordinates.

e public int getWdth() public int getHeight()
Returns the width and height of the grid world.

e public String getNeighbor(Direction direction)
Returns &t ri ng representing what is next to your critter in tineeg direction.” " means an empty square.

* public void win() public void | ose() public void sleep()
public void wakeup() public void reset()

Our code calls these methods on your critter tdyngbu when you have won a fight, lost a fightebeput to
sleep, woken up from sleeping, and when the gamtelas reset, respectively.

For example, to check whether your critter's x-dowate is greater than 10, you would write codédhas
if (getX() > 10) { /1l check if nmy x-coordinate is above 10

To check if your neighbor to the west isear , you could write this code in younsky's get Move method:
if (getNeighbor(Direction. WEST) . equal s("B")) { /1 check if a Bear is 1 square west of ne

Your Husky's fighting behavior may want to utilize the paraendo thefi ght method,opponent , which tells you what
kind of critter you are fighting against (such'as if you are fighting against gear).

Your Husky can return any text you like fromostring (besidesnul 1) and any color fronget Col or. Each critter's
get Col or andtoString are called on each simulation round, so you cae hausky that displays differently over time.
ThetoStri ng text is also passed to other animals when théy figurHusky; you may want to try to fool other animals.

On the last day of class, we will host a Crittarrtament. In each battle, two studenrtsky classes will be placed into
the simulator along with the other standard animalth 25 of each type. The simulator will run iimo significant
activity occurs or 1000 moves have passed. Thiestuvhoseiusky has the higher score in the right sidebar wins.

No grade points will be based on tournament perdmice. For example,Husky that sits completely still may fare well
in the tournament, but it will not receive full gepoints because it is too trivial.

Implementation Guidelines:

The provided GUI runs even if you haven't completidhe critters. The classes increase in diffictrom Bear toLi on
to Ti ger. We recommend writingear first. Look atst one. j ava and the lecture examples to get an idea of thietsire.

Any critter class you write will compile even if ydhave not written all of the required methods frin@cri tter class.
You may want to write and test some of the methioslisand leave others for later.

In the case of each animal, it will be impossildenhiplement the behavior if you don't have the trigflate in your object.
As you start writing each class, spend some tinmkithg about what state will be needed to achiéeedesired behavior.

Stylistic Guidelines:

Some of the style points for this assignment wélldwarded on the basis of how much energy andigtgatou put into
defining an interestingusky class. These points allow us to reward the stisdeho spend time writing an interesting
critter definition. Youmusky's behavior should not be trivial or closely mattcait of an existing animal shown in class.

Style points will also be awarded for expressingheaitter's behavior elegantifencapsulate your objects. Follow past
style guidelines about indentation, spacing, idiem§, and localizing variables. Place commenthatbeginning of each
class documenting that critter's behavior, andegptamnments on any complex code. Your critters lshwot produce any
console output. For reference, ®@aar, Li on, andTi ger together occupy 168 lines including comments.

4 of 4

