CSE 142, Winter 2008

Programming Assignment #2: ASCII Art (16 points)
Due Tuesday, January 22, 2008, 4:00 PM

This two-part assignment tests your understandirgxpressions, variableser loops, and class constants, and
also reinforces previous material on static metharttpri nt I n. Turn in two Java programs described below.

Part A: ASCII Art Contest (2 points):

The first part of your assignment is to write agreon that produces any text art (sometimes ca&Cl1l art”)
picture you like. Write a Java class namedi i Art in a file namedisci i Art.java. Your program can
produce any text picture you like, with the follawgirestrictions and details:

» The picture should be your own creationt an ASCIl image you found on the Internetlesewhere.

* The number of lines drawn should be at least Sibunore than 200, and no more than 100 chars./ line

» The picture should not include hateful, offensimeptherwise inappropriate images.

* The code should use at least one loop or static method, but should not containnindé loops.

* The picture must not be identical to your solutionPart B or consist entirely of reused Part Becod

* Your code should not use material beyond Ch. 8@tiook.

» If your Part A program compiles and runs succebsauid meets the above constraints, it will receive
the full 2 points. Part A will not be graded omlst("internal correctness").

You can post your ASCII art on Facebook as pad wbting contest.

Part B: Space Needle (14 points):

The second part of your assignment is to prodwsgeeaific text figure that
is supposed to look like Seattle's Space Needlen ih a file named

/T{ \T\ SpaceNeedl e. j ava. You shouldexactly reproduce the format of the
e I R R output at left. This includes having identical dwers and spacing.

7 | One way to write a Java program to draw this figuoaild be to write a
Y/ | systemout.println statement that prints each line of the figure.
However, this solution would not receive full ciedA major part of this
— — assignment is showing that you understasdloops.

In lines that have repeated patterns of charatttatssary in number from
o84 | om1 line to line, represent the lines and characteepad using nesteicr
o84 | 984 loops. (See Chapter 2's case study.) It maytbelyite pseudocode and
% % tables to understand the patterns, as describibe itextbook and lecture.
% % Another significant component of this assignmerthestask of
% % generalizing the program using a class constantdrabe changed to
ool | veA adjust the size of the figure. See the next paga flescription of this
% % constant and how it should be used in your program.
% % The course web site will contain files that show yloe expected output if
984 | 984 your size constant is changed to various otheregllYou can use our
% % Output Comparison Tool to measure numbers of chersac
/]]\
T T
A A R
IR D R
" e T

1of2



Stylistic Guidelines:
Use off or loops (nested as appropriate)

This program is intended to test your knowledgeulgh Chapter 2, especially nested loops. If you are
interested, you may use the Java features fromt€hapalthough you are not required to do so andwill
receive no extra credit for doing so. You may ume any constructs that are not in Chapters 1 gifwr8u

Use of static methods for structure and eliminatbredundancy

Continue to use static methods to structure yolutisn in such a way that the methods match thecsire of
the output itself. Avoid significant redundancgeunethods so that no substantial groups of icEntic
statements appear in your code. gfNont | n statements should appear in yearn method. You do not need
to use methods to capture redundancy in partiat)isuch as the two groups of colons in the folgwine:

Source code aesthetics (commenting, indentati@tisg, identifier names)

You are required to properly indent your code arntll@se points if you make significant indentationstakes.
See the textbook for examples of proper indentatida line of your code should be over 100 charadting.

Give meaningful names to methods and variablesum gode. Follow Java's naming standards about the
format ofd assNanes, et hodAndVar i abl eNanes, andCONSTANT _NAMES.

Include a comment at the beginning of your progwéth basic information and a description of thegyem.
Also include a comment at the start of each method, describing that method's behavior. Your comments
should be written in your own words.

Class constant for figure's size

You should create one (and only one) class conttaepresent the I I 14
size of the pieces of the figure. Usas the value of your constant. 3x4 | 3x4

Your figure_ muste based on that exact value to receive full tredi 4—/>| | \<—>
On any given execution your program will producst jone version of N I I SN I
the figure. However, you should refer to the clemsstant throughout L I 4
your code, so that by simply changing your con&atiue and e R R R SRR

recompiling, your program would produce a figurexdfifferent size.
Your program should scale correctly for any conistatue of 2 or greater.

Please note that the height of the needle’'s midsegtows as the square of the figure size. Irdéfault figure
size of 4, the midsection is 16 lines tall. If $ize were 7, the midsection would be 49 lines tall

How to Get Started:

This program is best completed in stages. We revamd that you do natorry about the constant at first.
Write an initial program without a constant, usiagp tables or pseudocode to help you deduce ttierps in
the output. After your figure looks correct at thefault size, begin a second version with the tzons See
Chapter 2's case study for an example progranutes a constant while drawing a figure.

Turn in your two Java files electronically from tHemework section of the web site. Part B willgraded on
its "external correctness" (whether the programpmites and produces exactly the expected outputjtand
"Iinternal correctness" (whether your source codleis the stylistic guidelines in this documenBs a point
of reference, our solution to Part B has 5 methmsdesmai n and occupie86 lines including comments and
blank lines, though you do nbave to match these totals exactly.

20f2



