
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9: Inheritance and Interfaces

Lecture 9-2: Polymorphism

reading: 9.2

self-check: #5-9

Copyright 2008 by Pearson Education
22

Polymorphism

� polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.

� System.out.println can print any type of object.

� Each one displays in its own way on the console.

� CritterMain can interact with any type of critter.

� Each one moves, fights, etc. in its own way.

Copyright 2008 by Pearson Education
33

Coding with polymorphism

� A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

� You can call any methods from Employee on ed.

� You can not call any methods specific to Lawyer (e.g. sue).

� When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0
System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
44

Polymorphism + parameters

� Methods can accept superclass types as parameters.

� You can pass any subtype of that superclass.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
}

� OUTPUT:
salary = 50000.0 salary = 50000.0
vacation days = 21 vacation days = 10
vacation form = pink vacation form = yellow

Copyright 2008 by Pearson Education
55

Polymorphism + arrays

� Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(), new Secretary(),
new Marketer(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

salary: 50000.0
v.days: 15
salary: 50000.0
v.days: 10
salary: 60000.0
v.days: 10
salary: 55000.0
v.days: 10

Copyright 2008 by Pearson Education
66

Polymorphism problems

� ~4-5 classes with inheritance relationships are shown.

� A client program calls methods on objects of each class.

� You must read the code and determine the client's output.

Copyright 2008 by Pearson Education
77

A polymorphism problem

� Assume that the following four classes have been declared:

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

Copyright 2008 by Pearson Education
88

A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}
public String toString() {

return "baz";
}

}
public class Mumble extends Baz {

public void method2() {
System.out.println("mumble 2");

}
}

� What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

Copyright 2008 by Pearson Education
99

� Add classes from top (superclass) to bottom (subclass).

� Include all inherited methods.

Diagramming the classes

Copyright 2008 by Pearson Education
1010

Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz

Copyright 2008 by Pearson Education
1111

Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

� Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

Copyright 2008 by Pearson Education
1212

Another problem

� The order of the classes is jumbled up.

� The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a ");
b();

}

public void b() {
System.out.print("Ham b ");

}

public String toString() {
return "Ham";

}
}

Copyright 2008 by Pearson Education
1313

Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b ");

}
}
public class Yam extends Lamb {

public void a() {
System.out.print("Yam a ");
super.a();

}
public String toString() {

return "Yam";
}

}

� What would be the output of the following client code?
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
System.out.println(); // to end the line of output
food[i].b();
System.out.println(); // to end the line of output
System.out.println();

}

Copyright 2008 by Pearson Education
1414

Class diagram

Copyright 2008 by Pearson Education
1515

Polymorphism at work

� Lamb inherits Ham's a. a calls b. But Lamb overrides b...
public class Ham {

public void a() {
System.out.print("Ham a ");
b();

}
public void b() {

System.out.print("Ham b ");
}
public String toString() {

return "Ham";
}

}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b ");
}

}

� Lamb's output from a:
Ham a Lamb b

Copyright 2008 by Pearson Education
1616

The table

method Ham Lamb Yam Spam

a

b

toString

Copyright 2008 by Pearson Education
1717

The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

� Output:
Ham
Ham a Lamb b
Lamb b

Ham
Ham a Ham b
Ham b

Yam
Yam a Ham a Spam b
Spam b

Yam
Yam a Ham a Lamb b
Lamb b

