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Polymorphism

� polymorphism: Ability for the same code to be used with 

different types of objects and behave differently with each.

� System.out.println can print any type of object.

� Each one displays in its own way on the console.

� CritterMain can interact with any type of critter.

� Each one moves, fights, etc. in its own way.
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Coding with polymorphism

� A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

� You can call any methods from Employee on ed.

� You can not call any methods specific to Lawyer (e.g. sue).

� When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary());         // 50000.0
System.out.println(ed.getVacationForm());   // pink
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Polymorphism + parameters

� Methods can accept superclass types as parameters.

� You can pass any subtype of that superclass.

public class EmployeeMain {
public static void main(String[] args) {

Lawyer lisa = new Lawyer();
Secretary steve = new Secretary();
printInfo(lisa);
printInfo(steve);

}

public static void printInfo(Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays());
System.out.println("form = " + empl.getVacationForm());
System.out.println();

}
}

� OUTPUT:
salary = 50000.0 salary = 50000.0
vacation days = 21 vacation days = 10
vacation form = pink vacation form = yellow
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Polymorphism + arrays

� Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] e = { new Lawyer(),   new Secretary(), 
new Marketer(), new LegalSecretary() };

for (int i = 0; i < e.length; i++) {
System.out.println("salary: " + e[i].getSalary());
System.out.println("v.days: " + e[i].getVacationDays());
System.out.println();

}
}

}

salary: 50000.0
v.days: 15
salary: 50000.0
v.days: 10
salary: 60000.0
v.days: 10
salary: 55000.0
v.days: 10
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Polymorphism problems

� ~4-5 classes with inheritance relationships are shown.

� A client program calls methods on objects of each class.

� You must read the code and determine the client's output.
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A polymorphism problem

� Assume that the following four classes have been declared:

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}
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A polymorphism problem
public class Baz extends Foo {

public void method1() {
System.out.println("baz 1");

}
public String toString() {

return "baz";
}

}
public class Mumble extends Baz {

public void method2() {
System.out.println("mumble 2");

}
}

� What would be the output of the following client code?
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}
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� Add classes from top (superclass) to bottom (subclass).

� Include all inherited methods.

Diagramming the classes
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Finding output with tables

method Foo Bar Baz Mumble

method1

method2

toString

method Foo Bar Baz Mumble

method1 foo 1 baz 1

method2 foo 2 bar 2 mumble 2

toString foo baz

method Foo Bar Baz Mumble

method1 foo 1 foo 1 baz 1 baz 1

method2 foo 2 bar 2 foo 2 mumble 2

toString foo foo baz baz
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Polymorphism answer
Foo[] pity = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < pity.length; i++) {

System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

� Output:
baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2
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Another problem

� The order of the classes is jumbled up.

� The methods sometimes call other methods (tricky!).

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
}

}

public class Ham {
public void a() {

System.out.print("Ham a   ");
b();

}

public void b() {
System.out.print("Ham b   ");

}

public String toString() {
return "Ham";

}
}
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Another problem 2
public class Spam extends Yam {

public void b() {
System.out.print("Spam b   ");

}
}
public class Yam extends Lamb {

public void a() {
System.out.print("Yam a   ");
super.a();

}
public String toString() {

return "Yam";
}

}

� What would be the output of the following client code?
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
System.out.println();     // to end the line of output
food[i].b();
System.out.println();     // to end the line of output
System.out.println();

}
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Class diagram
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Polymorphism at work

� Lamb inherits Ham's a.  a calls b.  But Lamb overrides b...
public class Ham {

public void a() {
System.out.print("Ham a   ");
b();

}
public void b() {

System.out.print("Ham b   ");
}
public String toString() {

return "Ham";
}

}

public class Lamb extends Ham {
public void b() {

System.out.print("Lamb b   ");
}

}

� Lamb's output from a:
Ham a   Lamb b
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The table

method Ham Lamb Yam Spam

a

b

toString
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The answer
Ham[] food = {new Lamb(), new Ham(), new Spam(), new Yam()};
for (int i = 0; i < food.length; i++) {

System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

� Output:
Ham
Ham a   Lamb b
Lamb b

Ham
Ham a   Ham b
Ham b

Yam
Yam a   Ham a   Spam b
Spam b

Yam
Yam a   Ham a   Lamb b
Lamb b


