
Building Java Programs

Chapter 8: Classes

Copyright 2008 by Pearson Education

Chapter 8: Classes

Lecture 8-3: More Critters, static

Testing Critters

� Focus on one specific Critter of one specific type

� Only spawn 1 of each Critter type

� Make sure your fields update properly

� Use println statements to see field values

Copyright 2008 by Pearson Education
22

� Use println statements to see field values

� Look at the behavior one step at a time

� Use "Step" rather than "Go"

A complex Critter: Snake

� Slithers in a wider and wider pattern

� ROAR 50% of the time; POUNCE 50% of the time

� Never hungry

Copyright 2008 by Pearson Education
33

� Never hungry

� Displayed as an "S"

� Has a custom color

Determining necessary fields

� Information required to decide what move to make?

� Direction to go in

� Length of current cycle

� Number of moves made in current cycle

Copyright 2008 by Pearson Education
44

� Information required to decide how to fight?

� A Random object

Static fields and
methods

Copyright 2008 by Pearson Education

Critter: Drunken Frat Guy

� All DFG Critters are trying to get to the same party

� The party is at a randomly-generated location

� On a 60px wide by 50px tall world

Copyright 2008 by Pearson Education
66

� They stumble north then east until they reach the party

DFG: a flawed solution
import java.util.*;

public class DrunkenFratGuy extends Critter {
private int partyX;
private int partyY;

public DrunkenFratGuy() {
Random r = new Random();

Copyright 2008 by Pearson Education
77

Random r = new Random();
partyX = r.nextInt(60);
partyY = r.nextInt(50);

}

public Direction getMove() {
if(partyY != getY()) {

return Direction.NORTH;
} else if(partyX != getX()) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

DFG: Where did they all go?

� Each DFG is heading to its own party!

� We need a way for Critters of a type to share information

� Tournament-winning Huskies do this

Copyright 2008 by Pearson Education
88

� Tournament-winning Huskies do this

� Hunt in packs

� Don't kill each other

� Share location of opponents

Static fields vs. fields

� static: Part of a class, rather than part of an object.

� A single static field is shared by all objects of that class

� static field, general syntax:

private static <type> <name>;

Copyright 2008 by Pearson Education
99

private static <type> <name>;

or,

private static <type> <name> = <value>;

� Example:

private static int count = 0;

Static field example

� Count the number of Husky objects created:

public class Husky implements Critter {

// count of Huskies created so far
private static int objectCount = 0;

private int number; // each Husky has a number

Copyright 2008 by Pearson Education
1010

private int number; // each Husky has a number

public Husky() {
objectCount++;
number = objectCount;

}

...

public String toString() {
return "I am Husky #" + number +

"out of " + objectCount;
}

}

Static methods

� static method: part of a class, not part of an object.

� good places to put code related to a class, but not directly
related to each object's state

� shared by all objects of that class

does not understand the implicit parameter;

Copyright 2008 by Pearson Education
1111

� does not understand the implicit parameter;
therefore, cannot access fields directly

� if public, can be called from inside or outside the class

� Declaration syntax: (same as we have seen before)

public static <return type> <name>(<params>) {

<statements>;

}

Static method example 1

� Java's built-in Math class has code that looks like this:

public class Math {
...

public static int abs(int a) {
if (a >= 0) {

return a;

Copyright 2008 by Pearson Education
1212

return a;
} else {

return -a;
}

}

public static int max(int a, int b) {
if (a >= b) {

return a;
} else {

return b;
}

}
}

Static method example 2

� Adding a static method to our Point class:

public class Point {
...

// Converts a String such as "(5, -2)" to a Point.
// Pre: s must be in valid format.

public static Point parse(String s) {

Copyright 2008 by Pearson Education
1313

public static Point parse(String s) {
s = s.substring(1, s.length() - 1); // "5, -2"
s = s.replaceAll(",", ""); // "5 -2"

// break apart the tokens, convert to ints
Scanner scan = new Scanner(s);
int x = scan.nextInt(); // 5
int y = scan.nextInt(); // 2

Point p = new Point(x, y);
return p;

}
}

Calling static methods, outside

� Static method call syntax (outside the class):

<class name>.<method name>(<values>);

� This is the syntax client code uses to call a static method.

Copyright 2008 by Pearson Education
1414

� Examples:

int absVal = Math.max(5, 7);

Point p3 = Point.parse("(-17, 52)");

Calling static methods, inside

� Static method call syntax (inside the class):

<method name>(<values>);

� This is the syntax the class uses to call its own static method.

� Example:

Copyright 2008 by Pearson Education
1515

� Example:

public class Math {

// other methods such as ceil, floor, abs, etc.
// ...

public static int round(double d) {
if (d - (int) d >= 0.5) {

return ceil(d);
} else {

return floor(d);
}

}
}

DFG: all go to the same party
import java.util.*;

public class DrunkenFratGuy extends Critter {
private static int partyX;
private static int partyY;

public DrunkenFratGuy() {
Random r = new Random();

Copyright 2008 by Pearson Education
1616

Random r = new Random();
partyX = r.nextInt(60);
partyY = r.nextInt(50);

}

public Direction getMove() {
if(partyY != getY()) {

return Direction.NORTH;
} else if(partyX != getX()) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

