g

Building Java Programs

Chapter 8: Classes
Lecture 8-3: More Critters, static

"7 Copyright 2008 by Pearson Education

e

Testing Critters

* Focus on one specific Critter of one specific type
* Only spawn 1 of each Critter type

* Make sure your fields update properly
» Use printl| n statements to see field values

* Look at the behavior one step at a time
» Use "Step" rather than "Go"

Copyright 2008 by Pearson Education

—_

P —

A complex Critter: Snake

e Slithers in a wider and wider pattern

* ROAR 50% of the time; POUNCE 50% of the time

* Never hungry 1E
15
15| 2;
* Displayed as an "S" gw S
e
R

e Has a custom color |—L;| 5

o y—

Copyright 2008 by Pearson Education

—_

|

Determining necessary fields

e Information required to decide what move to make?
* Direction to go in
» Length of current cycle
* Number of moves made in current cycle

e Information required to decide how to fight?
A Randomobiject

-

Copyright 2008 by Pearson Education

—_

g

Static fields and
methods

n‘

|

Critter: Drunken Frat Guy

e All DFG Critters are trying to get to the same party

* The party is at a randomly-generated location
» On a 60px wide by 50px tall world

* They stumble north then east until they reach the party

=

~_ Copyright 2008 by Pearson Education

—_

DFG: a flawed solution

i mport java.util.*;

public class DrunkenFrat Guy extends Critter {
private int partyX;
private int partyy,;

publ i ¢ DrunkenFrat Guy() {
Random r = new Randon();
partyX = r.nextlnt(60);
partyY = r.nextlnt(50);

}

public Direction get Mve() {
if(partyY !'= getY()) {
return Direction. NORTH;
} else if(partyX != getX()) {
return Direction. EAST,;
} else {
return D rection. CENTER,
}
: }
=)

| ~_ Copyright 2008 by Pearson Education

—_

e

DFG: Where did they all go?

e Each DFG is heading to its own party!
* We need a way for Critters of a type to share information

* Tournament-winning Huskies do this
 Hunt in packs
» Don't kill each other
» Share location of opponents

o y—

Copyright 2008 by Pearson Education

—_

g

Static fields vs. fields

e static: Part of a class, rather than part of an object.
» A single static field is shared by all objects of that class

» static field, general syntax:

private static <type> <name>,

or,

private static <type> <name> <value>;

» Example:
private static int count = O;

o p————r———

Copyright 2008 by Pearson Education

—_

e

Static field example

e Count the number of Husky objects created:

public class Husky inplenments Critter {

/[l count of Huskies created so far
private static int objectCount = O;

private int nunber; /| each Husky has a nunber

public Husky() {
obj ect Count ++;
nunmber = obj ect Count;

}

public String toString() {
return "l am Husky #" + nunber +
"out of " + object Count;

}

Copyright 2008 by Pearson Education

10

-

—_

e

Static methods

» static method: part of a class, not part of an object.

e good places to put code related to a class, but not directly
related to each object's state

» shared by all objects of that class

» does not understand the implicit parameter;
therefore, cannot access fields directly

 if publ i c, can be called from inside or outside the class

* Declaration syntax: (same as we have seen before)

public static <return type> <name>(<params>) {
<statements>;

. }

41

~ Copyright 2008 by Pearson Education

P

Static method example 1

e Java's built-in Mat h class has code that looks like this:
public class Math {

public static int abs(int a) {
if (a >= 0) {
return a;
} else {
return -a;
}

}

public static int max(int a, int b) {
fta >=b) {
return a;
} else {
return b;
}

}

~_ Copyright 2008 by Pearson Education

—_

] 2

—_

|

Static method example 2

* Adding a static method to our Poi nt class:
public class Point {

LEAYCOMVEETS o SER T NgASHER vasyEb =2y e ova T Polint:
ey E S S g s) e e Y S e S s

public static Point parse(String s) {
Ss.substring(1, s.length() - 1); // "5, -2"
s.replaceAl (",", ""); Lo 2

/|l break apart the tokens, convert to ints
Scanner scan = new Scanner (S);

SoEE
S

int x = scan.nextint(); LS
int y = scan.nextint(); e
Point p = new Point(Xx, Y);
return p;
}
T, 13

= ~_ Copyright 2008 by Pearson Education

P —

Calling static methods, outside

e Static method call syntax (outside the class):

<class name>. <method name>(<values>) ;

» This is the syntax client code uses to call a static method.

» Examples:
int absVal = Math. max(5, 7);

Point p3 = Point.parse("(-17, 52)");

Tp——— 14
:;___ Copyright 2008 by Pearson Education

Calling static methods, inside

e Static method call syntax (inside the class):

<method name>(<values>) ;

» This is the syntax the class uses to call its own static method.

 Example:

public class Math {

[l other nmethods such as ceil, floor, abs, etc.
[/

public static int round(double d) {
if (d - (int) d >= 0.5) {
return ceil (d);
} else {
return fl oor(d);
}
}

} 15
; Copyright 2008 by Pearson Education

DFG: all go to the same party

i mport java.util.*;

public class DrunkenFrat Guy extends Critter {
private static int partyX;
private static int partyy;

publ i ¢ DrunkenFrat Guy() {
Random r = new Randon();
partyX = r.nextlnt(60);
partyY = r.nextlnt(50);

}

public Direction get Mve() {
if(partyY !'= getY()) {
return Direction. NORTH;
} else if(partyX != getX()) {
return Direction. EAST,;
} else {
return D rection. CENTER,
}
: }
=)

| ~_ Copyright 2008 by Pearson Education

—_

16

