
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8: Classes

Lecture 8-2: Constructors, Encapsulation, Critters

reading: 8.4 - 8.6

Copyright 2008 by Pearson Education
2

Lecture outline

� anatomy of a class, continued

� initializing objects: constructors

� encapsulation

� private fields

� printing objects: the toString method

3
Copyright 2008 by Pearson Education

Object initialization:
constructors

reading: 8.4

self-check: #10-12

exercises: #9, 11, 14, 16

Copyright 2008 by Pearson Education
4

Initializing objects

� Currently it is tedious to create a Point and initialize it:

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

� We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

� We are able to this with Java's built-in Point class.

Copyright 2008 by Pearson Education
5

Constructors

� constructor: Initializes the state of new objects.

public <type> (<parameter(s)>) {

<statement(s)> ;

}

� runs only when the client uses the new keyword

� does not specify a return type;

it implicitly returns the new object being created

� If a class has no constructor, Java gives it a default

constructor with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
6

Constructor example

public class Point {
int x;
int y;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
7

Tracing a constructor call

� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}

yx

p1

Copyright 2008 by Pearson Education
8

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.x + ", " + p1.y + ")");
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1: (5, 2)
p2: (4, 3)
p2: (6, 7)

9
Copyright 2008 by Pearson Education

The toString method

reading: 8.6

self-check: #18, 20-21

exercises: #9, 14

Copyright 2008 by Pearson Education
10

Printing objects

� By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.println("p: " + p); // p is Point@9e8c34

� We can print a better string (but this is cumbersome):

System.out.println("p: (" + p.x + ", " + p.y + ")") ;

� We'd like to be able to print the object itself:

// desired behavior
System.out.println("p: " + p); // p is (10, 7)

Copyright 2008 by Pearson Education
11

The toString method

� tells Java how to convert an object into a String

� called when an object is printed/concatenated to a String :

Point p1 = new Point(7, 2);

System.out.println("p1 is " + p1);

� If you prefer, you can write .toString() explicitly.

System.out.println("p1 is " + p1.toString());

� Every class has a toString , even if it isn't in your code.

� The default is the class's name and a hex (base-16) number:

Point@9e8c34

Copyright 2008 by Pearson Education
12

toString syntax

public String toString() {

<code that returns a String> ;
}

� Example:

// Returns a String representing this Point.
public String toString() {

return "(" + x + ", " + y + ")";
}

� The method name, return, parameters must match exactly.

� Modify our client code to use toString .

Copyright 2008 by Pearson Education
13

Client code
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin: " + p1.distanceFromOrigin());
System.out.println("p2's distance from origin: " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1: " + p1);
System.out.println("p2: " + p2);

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2: " + p1.d istance(p2));

}
}

14
Copyright 2008 by Pearson Education

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17

exercises: #5

Copyright 2008 by Pearson Education
15

Encapsulation

� encapsulation: Hiding implementation details of an

object from its clients.

� Encapsulation provides abstraction.

� separates external view (behavior) from internal view (state)

Copyright 2008 by Pearson Education
16

Private fields

� Fields can be declared private.

� No code outside their own class can access or change them.

private <type> <name> ;

� Examples:

private int x;

private String name;

� Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

Copyright 2008 by Pearson Education
17

Accessing private state

� We can provide methods to get and/or set a field's value:

// A "read-only" access to the x field ("accessor")
public int getX() {

return x;
}

// Allows clients to change the x field ("mutator")
public void setX(int newX) {

x = newX;
}

� Client code will look more like this:

System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

Copyright 2008 by Pearson Education
18

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x = x + dx;
y = y + dy;

}
}

Copyright 2008 by Pearson Education
19

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1: (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2: (" + p2.getX() + ", " + p2.getY() + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

Copyright 2008 by Pearson Education
20

Benefits of encapsulation

� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.

� A bank app forbids a client to change an Account 's balance.

� Allows you to change the class implementation.

� Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

� Allows you to constrain objects' state (invariants).

� Example: Only allow Point s with non-negative coordinates.

Copyright 2008 by Pearson Education

Homework 8:
Critters

Copyright 2008 by Pearson Education
22

Critters

� A simulation world with animal objects with behavior:

� getMove movement

� eat eating food

� fight animal fighting

� toString letter to display

� getColor color to display

� You must implement:

� Bear

� Lion

� Tiger

� Husky

Copyright 2008 by Pearson Education
23

A Critter class

public class <name> extends Critter {

...

}

� Writing extends Critter tells the simulator that your

class is a critter animal

� This is an example of inheritance, which we'll see in Ch. 9

� Write some/all 5 methods to give your animals behavior.

Copyright 2008 by Pearson Education
24

How the simulator works

� When you press "Go", the simulator enters a loop:

� move each animal once (getMove), in random order

� if the animal has moved onto an occupied square, fight !

� if the animal has moved onto food, ask it if it wants to eat

� Key concept: The simulator is in control, NOT your animal.

� Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

� Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

Copyright 2008 by Pearson Education
25

Critter exercise

� Write a critter class Cougar (the dumbest of all animals):

� eat : Always eats.

� fight : Always pounces.

� getColor : Blue if the Cougar has never fought; red if he has.

� getMove : The drunk Cougar staggers left 2, right 2, repeats.

� toString : Always returns "C" .

Copyright 2008 by Pearson Education
26

Ideas for state

� Counting is often helpful:

� How many total moves has this animal made?

� How many times has it eaten? Fought?

� Remembering recent actions in fields is helpful:

� Which direction did the animal move last?

� How many times has it moved that way?

� Did the animal eat the last time it was asked?

� How many steps has the animal taken since last eating?

� How many fights has the animal been in since last eating?

� You must not only have the right state, but update that
state properly when relevant actions occur.

Copyright 2008 by Pearson Education
27

Keeping state

� How can a critter move left 2, right 2, and repeat?

public Direction getMove() {
for (int i = 1; i <= 2; i++) {

return Direction.LEFT;
}
for (int i = 1; i <= 2; i++) {

return Direction.RIGHT;
}

}
�

private int moves; // total moves made by this Critter

public Direction getMove() {
moves++;
if (moves % 4 == 1 || moves % 4 == 2) {

return Direction.LEFT;
} else {

return Direction.RIGHT;
}

}

Copyright 2008 by Pearson Education
28

Critter solution
public class Cougar extends Critter {

private int moves;
private boolean fought;
public Cougar() {

moves = 0;
fought = false;

}
public boolean eat() {

return true;
}
public Attack fight() {

fought = true;
return Attack.POUNCE;

}
public Color getColor() {

if (fought) {
return Color.RED;

} else {
return Color.BLUE;

}
}
public Direction getMove() {

moves++;
if (moves % 4 == 1 || moves % 4 == 2) {

return Direction.WEST;
} else {

return Direction.EAST;
}

}
public String toString() {

return "C";
}

}

