Building Java Programs

Chapter 8: Classes
Lecture 8-2: Constructors, Encapsulation, Critters

reading: 8.4 - 8.6

gl

~_ Copyright 2008 by Pearson Education

~ Lecture outline

* anatomy of a class, continued
» initializing objects: constructors

» encapsulation
- private fields

» printing objects: the toString method

—

o 2
4 Copyright 2008 by Pearson Education

Object initialization:
constructors

reading: 8.4

self-check: #10-12
exercises: #9, 11, 14, 16

B—————

Iniializing objects

e Currently it is tedious to create a Point and initialize it:

Point p = new Point();
p.X = 3;
p.y = 8; // tedious

* We'd rather pass the fields' initial values as parameters:

Point p = new Point(B I/ better!

« We are able to this with Java's built-in Point class.

- =

Copyright 2008 by Pearson Education

Constructors

» constructor: Initializes the state of new objects.

public <type> (<parameter(s)>){
<statement(s)> ;

e runs only when the client uses the new keyword

» does not specify a return type;
it implicitly returns the new object being created

» If a class has no constructor, Java gives it a default
constructor with no parameters that sets all fields to O.

- -

Copyright 2008 by Pearson Education

gl

~_ Copyright 2008 by Pearson Education

—

Constructor example

public class Point {
Int X;
Inty;

// Constructs a Point at the given x/y location.
public Point(int initialX, int initialY) {

X = InitialX;

y = initialY;

}

public void translate(int dx, int dy) {
X =X + dx;

} y =y +dy,

" Tracing a constructor cal

* What happens when the following call is made?
Point p1 = new Point(7, 2);

")

X y

public Point(int initialX, int initialY) {
X = initialX;
y = initialY;

public void translate(int dx, int dy) {
X =X + dx;
y=y+dy,

}

Copyright 2008 by Pearson Education

—
=

—

public class PointMain3 {
public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

/I print each point
System.out.printin("pl: (" + p1l.x+", "+ ply +"
System.out.printin("p2: (" + p2.x+", " + p2.y + "

/I move p2 and then print it again
p2.translate(2, 4);
System.out.printin("p2: (" + p2.x +", " + p2.y + "

}

OUTPUT:
pl: (5, 2)
p2: (4, 3)
p2: (6, 7)

Copyright 2008 by Pearson Education

= COde’ S

\-{_{
~— —

)");

The toString method

reading: 8.6

self-check: #18, 20-21
exercises: #9, 14

==
-) : 9
ad Copyright 2008 by Pearson Education

Printing objects

* By default, Java doesn't know how to print objects:

Point p = new Point(10, 7);
System.out.printin("p: " + p); /Il p is Point@9e8c34

* We can print a better string (but this is cumbersome):

System.out.printin("p: (" + p.x+", "+ p.y +")")

» We'd like to be able to print the object itself:

/[desired behavior
System.out.printin("p: " + p)es Episi(10;:0)

10

-~

Copyright 2008 by Pearson Education

- -

The toString method

* tells Java how to convert an object into a String

* called when an object is printed/concatenated to a String
Point p1 = new Point(7, 2);

System.out.printin("plis " + pl);
» If you prefer, you can write .toString() explicitly.
System.out.printin("plis " + pl.toString());

* Every class has a toString , even if it isn't in your code.
 The default is the class's name and a hex (base-16) number:

Point@9e8c34

11
Copyright 2008 by Pearson Education

- =

toring syntax

public String toString() {
<code that returns a String> ;

}

 Example:

/[Returns a String representing this Point.
public String toString() {

return Il(ll + X + ll’ 11 + y + Il)ll;
}

» The method name, return, parameters must match exactly.

* Modify our client code to use toString

Copyright 2008 by Pearson Education

12

Client code

Il This client program uses the Point class.
public class PointMain {
public static void main(String[] args) {
Il create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.printin("pl1: " + pl);
System.out.printin("p2: " + p2);

// compute/print each point's distance from the ori gin
System.out.printin("p1's distance from origin: " + pl.distanceFromOrigin());
System.out.printin("p2's distance from origin: " + pl.distanceFromOrigin());

// move pl and p2 and print them again
pl.translate(11, 6);

p2.translate(1, 7);
System.out.printin("p1: " + pl);
System.out.printin("p2: " + p2);

// compute/print distance from pl to p2
System.out.printin("distance from plto p2:" + pl.d istance(p2));

i}

~_ Copyright 2008 by Pearson Education

13

—

Encapsulation

reading: 8.5 - 8.6

self-check: #13-17
exercises: #5

==

e 14
s Copyright 2008 by Pearson Education

Enapsulation

 encapsulation: Hiding implementation details of an
object from its clients.

» Encapsulation provides abstraction.
« separates external view (behavior) from internal view (state)

EREEN

Qo
ZN3394
AMP

40310
pubid wTRUT

- 4’ Measure—"ms

Resistor Voltage .s&
Here Here !

\

=

s Copyright 2008 by Pearson Education

15

Priate fields

* Fields can be declared private.
* No code outside their own class can access or change them.

private <type> <name> ;

» Examples:

private Int X;
private String name;

* Client code sees an error when accessing private fields:

PointMain.java:11: x has private access in Point
System.out.printin("plis (" + pl.x+", "+ ply+ "");

N

16

S E

Copyright 2008 by Pearson Education

* We can provide methods to get and/or set a field's value:

/I A "read-only" access to the x field ("accessor")
public int getX() {
return X;

}

I/ Allows clients to change the x field ("mutator")
public void setX(int newX) {
X = newxX;

}

e Client code will look more like this:

System.out.printin("p1: (" + PLigetX(E i eyt PLOeR e R
pl.setX(14);

17

—

Copyright 2008 by Pearson Education

" Point class, version 4

/I A Point object represents an (X, y) location.
public class Point {

private int Xx;

private int y;

public Point(int initialX, int initialY) {
X = initialX;

} y = initialY;

public double distanceFromOrigin() {
return Math.sqrt(x *x +y *vy);

}

public int getX() {
return Xx;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
X = newx;

} Yy = newy,;

public void translate(int dx, int dy) {
X =X + dx;

} y =y +dy;

~_ Copyright 2008 by Pearson Education

18

" Client code, version 4

public class PointMain4 {
public static void main(String[] args) {
Il create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

I print each point

System.out.printin("pl: (" + plgetX() +","+ pl.getY() +")");
System.out.printin("p2: (" + PZigeDp ikt p2.getY() +")");
// move p2 and then print it again
p2.translate(2, 4);
System.out.printin("p2: (" + p2.getX() +" "+ p2.getY() +")");
}

}

OUTPUT:

plis (5, 2)

p2is (4, 3)

p2is (6, 7)

19

Copyright 2008 by Pearson Education

—

Benefits of encapsulation

* Provides abstraction between an object and its clients.

* Protects an object from unwanted access by clients.
» A bank app forbids a client to change an Account 's balance.

* Allows you to change the class implementation.

» Point could be rewritten to use polar coordinates
(radius r, angle 8), but with the same methods. //

* Allows you to constrain objects’ state (invariants).
« Example: Only allow Point s with non-negative coordinates.

20

_— g

~ Copyright 2008 by Pearson Education

Homework 8:
Critters

R FEE—TT——

S E

Crte rs

* getMove
e eat
e fight
toString
getColor

A simulation world with animal objects with behavior:

movement
eating food
animal fighting
letter to display
color to display

* You must implement:

» Bear
e Lion
» Tiger
e Husky

Copyright 2008 by Pearson Education

22

=

public class <name> extends Critter {
}
e Writing extends Critter tells the simulator that your

class is a critter animal
e This is an example of inheritance, which we'll see in Ch. 9

* Write some/all 5 methods to give your animals behavior.

23

S E

Copyright 2008 by Pearson Education

How the simulator works

* When you press "Go", the simulator enters a loop:
» move each animal once (getMove), in random order
 if the animal has moved onto an occupied square, fight
 if the animal has moved onto food, ask it if it wants to eat

» Key concept: The simulator is in control, NOT your animal.

« Example: getMove can return only one move at a time.
getMove can't use loops to return a sequence of moves.

» Your animal must keep state (as fields) so that it can make a
single move, and know what moves to make later.

24

— Copyright 2008 by Pearson Education

-~

Critter exercise

e Write a critter class Cougar (the dumbest of all animals):

o eat : Always eats.

o fight : Always pounces.

getColor : Blue if the Cougar has never fought; red if he has.

getMove : The drunk Cougar staggers left 2, right 2, repeats.

toString : Always returns "C" .

25
Copyright 2008 by Pearson Education

Ideas for state

e Counting is often helpful:
« How many total moves has this animal made?
* How many times has it eaten? Fought?

* Remembering recent actions in fields is helpful:

» Which direction did the animal move last?
« How many times has it moved that way?

» Did the animal eat the last time it was asked?
» How many steps has the animal taken since last eating?
» How many fights has the animal been in since last eating?

* You must not only have the right state, but update that
state properly when relevant actions occur.

— Copyright 2008 by Pearson Education

26

Keping state

e How can a critter move left 2, right 2, and repeat?

ic Direction getMove() {
nti=1;i1<=2;i++){
Direction.

= =

turn Direction.RIG

private int moves; // total moves made by this Critter
public Direction getMove() {
moves++;
if(moves %4 ==1|| moves % 4 == 2){
return Direction.LEFT;
} else {
return Direction.RIGHT;
| }
:_ } 27

- =

Copyright 2008 by Pearson Education

Critter solution

public class Cougar extends Critter {
private int moves;
private boolean fought;

public Cougar(z){
moves
fought = false;

public boolean eat() {
return true;

pub|ICf Attz%]ck flgr]ht() {
= frue
retugrn Attack.POUNCE;

publlc Color Ig1jetCoIor() {
return Color.RED;
se
return Color.BLUE;

}
public Direction getMove() {
moves++;
If (moves % 4.== 1 || moves % 4 == 2) {
return Direction. WEST,
} else {
return Direction.EAST,;
}
public String toStrlng() {
. return
A b . 28

Copyright 2008 by Pearson Education

—

