
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 6: File Processing

Lecture 6-1: File input using Scanner

reading: 6.1 - 6.2, 5.3

self-check: Ch. 6 #1-6

exercises: Ch. 6 #5-7 



Copyright 2008 by Pearson Education
2

Input/output ("I/O")

� import java.io.*;

� Create a File object to get info about a file on disk.

(This doesn't actually create a new file on the disk.)

File f = new File ("example.txt");
if ( f.exists() && f.length() > 1000) {

f.delete() ;
}

whether this file exists on diskexists()

returns file's namegetName()

changes name of filerenameTo( file)

removes file from diskdelete()

returns number of bytes in filelength()

returns whether file is able to be readcanRead()

DescriptionMethod name



Copyright 2008 by Pearson Education
3

Reading files

� To read a file, pass a File when constructing a Scanner . 

Scanner <name> = new Scanner(new File(" <file name>"));

Example:

Scanner input = new Scanner( new File("numbers.txt") );

or:

File file = new File("numbers.txt");
Scanner input = new Scanner( file );



Copyright 2008 by Pearson Education
4

File paths

� absolute path: specifies a drive or a top "/" folder

� "C:/Documents/smith/hw6/input/data.csv"

� Windows can also use backslashes to separate folders.

� relative path: does not specify any top-level folder

� "names.dat"

� "input/kinglear.txt"

� Assumed to be relative to the current directory:

Scanner input = new Scanner(new File( "data/readme.txt" ));

If our program is in H:/hw6 ,
Scanner will look for H:/hw6/data/readme.txt



Copyright 2008 by Pearson Education
5

Compiler error w/ files

� The following program does not compile:

import java.io.*;     // for File
import java.util.*;   // for Scanner

public class ReadFile {
public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

� The following error occurs:

ReadFile.java:6: unreported exception java.io.FileN otFoundException;
must be caught or declared to be thrown

Scanner input = new Scanner(new File("data.txt"));
^



Copyright 2008 by Pearson Education
6

Exceptions

� exception: An object representing a program error.

� Programs with invalid logic will cause exceptions:

� dividing by 0

� calling charAt on a String and passing too large an index

� trying to read a file that does not exist

� We say that a logical error "throws" an exception.

� It is also possible to "catch" (handle or fix) an exception.

� checked exception: An error that must be handled by 

our program (otherwise it will not compile).

� We must specify how our program will handle file I/O failures.



Copyright 2008 by Pearson Education
7

Throwing exceptions

� throws clause: Keywords placed on a method's header to 

state that it may generate an exception.

� Like saying, "I hereby agree that this method might throw an 

exception, and I accept the consequences if this happens."

� Syntax:

public static <type> <name>( <params>) throws <type> {

� Example:

public class ReadFile {

public static void main(String[] args)

throws FileNotFoundException {



Copyright 2008 by Pearson Education
8

Input tokens

� token: A unit of user input, separated by whitespace. 

� A Scanner splits a file's contents into tokens.

� If an input file contains the following:
23   3.14

"John Smith"

The Scanner can interpret the tokens as the following types:

Token Type(s)

23 int , double , String

3.14 double , String

"John String

Smith" String



Copyright 2008 by Pearson Education
9

Files and input cursor

� Consider a file numbers.txt that contains this text:

308.2

14.9 7.4  2.8

3.9 4.7    -15.4

2.8

� A Scanner views all input as a stream of characters:

� 308.2\n   14.9 7.4  2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

� input cursor: The current position of the Scanner .



Copyright 2008 by Pearson Education
10

Consuming tokens

� consuming input: Reading input and advancing the cursor.

� Calling nextInt etc. moves the cursor past the current token.

308.2\n   14.9 7.4  2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.nextDouble()    // 308.2

308.2 \n   14.9 7.4  2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.next()          // "14.9"

308.2\n   14.9 7.4  2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^



Copyright 2008 by Pearson Education
11

File input question

� Recall the input file numbers.txt :
308.2

14.9 7.4  2.8

3.9 4.7    -15.4

2.8

� Write a program that reads the first 5 values from the file 
and prints them along with their sum.

number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
Sum = 337.19999999999993



Copyright 2008 by Pearson Education
12

File input answer
// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*;    // for File
import java.util.*;  // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner( new File("numbers.txt") );
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble() ;
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}



Copyright 2008 by Pearson Education
13

Scanner exceptions

� InputMismatchException
� You read the wrong type of token (e.g. read "hi" as int ).

� NoSuchElementException
� You read past the end of the input.

� Finding and fixing these exceptions:

� Read the exception text for line numbers in your code (the 
first line that mentions your file; often near the bottom):

Exception in thread "main" 
java.util.NoSuchElementException

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)



Copyright 2008 by Pearson Education
14

Testing for valid input

� Scanner methods to see what the next token will be:

� These methods do not consume input;

they just give information about the next token.

� Useful to see what input is coming, and to avoid crashes

returns true if there is a next token and it can 
be read as a double

hasNextDouble()

returns true if there is a next token and it can 
be read as an int

hasNextInt()

returns true if there are any more tokens of 

input to read  (always true for console input)

hasNext()

DescriptionMethod



Copyright 2008 by Pearson Education
15

Using hasNext methods

� To avoid exceptions:

Scanner console = new Scanner(System.in);
System.out.print("How old are you? ");
if ( console.hasNextInt() ) {

int age = console.nextInt() ;   // will not crash!
System.out.println("Wow, " + age + " is old!");

} else {
System.out.println("You didn't type an integer.");

}

� To detect the end of a file:

Scanner input = new Scanner(new File("example.txt")) ;
while ( input.hasNext() ) {

String token = input.next() ;   // will not crash!
System.out.println("token: " + token);

}



Copyright 2008 by Pearson Education
16

File input question 2

� Modify the Echo program to process the entire file:

(It should work no matter how many values are in the file.)

number = 308.2
number = 14.9
number = 7.4
number = 2.8
number = 3.9
number = 4.7
number = -15.4
number = 2.8
Sum = 329.29999999999995



Copyright 2008 by Pearson Education
17

File input answer 2
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*;     // for File
import java.util.*;   // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat") );
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}



Copyright 2008 by Pearson Education
18

File input question 3

� Modify the program to handle files that contain non-
numeric tokens (by skipping them).

� For example, it should produce the same output as before 
when given this input file, numbers2.dat :

308.2  hello

14.9 7.4  bad stuff   2.8

3.9 4.7  oops -15.4

:-) 2.8  @#*($&



Copyright 2008 by Pearson Education
19

File input answer 3
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*;     // for File
import java.util.*;   // for Scanner

public class Echo3 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers2.dat" ));
double sum = 0.0;
while ( input.hasNext() ) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

} else {
input.next();   // throw away the bad token

}
}
System.out.println("Sum = " + sum);

}
}



Copyright 2008 by Pearson Education

Line-based
file processing

reading: 6.3

self-check: #7-11

exercises: #1-4, 8-11



Copyright 2008 by Pearson Education
21

Hours question

� Given a file hours.txt with the following contents:

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jenn 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing hours worked by each person:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

� Let's try to solve this problem token-by-token ...



Copyright 2008 by Pearson Education
22

Hours answer (flawed)
import java.io.*;            // for File
import java.util.*;          // for Scanner

public class HoursWorked {   // a non-working solution
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNext()) {

// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while ( input.hasNextDouble() ) {

totalHours += input.nextDouble() ;
days++;

}
System.out.println(name + " (ID#" + id + 

") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

}
}

}



Copyright 2008 by Pearson Education
23

Flawed output
Susan (ID#123) worked 487.4 hours ( 97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at HoursWorked.main(HoursBad.java:9)

� The inner while loop is grabbing the next person's ID.

� We want to process the tokens, but we also care about the 
line breaks (they mark the end of a person's data).

� A better solution is a hybrid approach:

� First, break the overall input into lines.

� Then break each line into tokens.



Copyright 2008 by Pearson Education
24

Line-based Scanner methods

� nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File(" <file name>"));
while ( input.hasNextLine() ) {

String line = input.nextLine() ;

<process this line>;

}

returns true if there are any more lines of input 

to read (always true for console input)

hasNextLine()

returns the next entire line of inputnextLine()

DescriptionMethod



Copyright 2008 by Pearson Education
25

Consuming lines of input
23   3.14 John Smith   "Hello world"

45.2 19

� The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2  19\n
^

� input.nextLine()
23\t3.14 John Smith\t"Hello world" \n\t\t45.2  19\n

^

� input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2  19 \n

^

� Each \n character is consumed but not returned.



Copyright 2008 by Pearson Education
26

Scanners on Strings

� A Scanner can tokenize the contents of a String :

Scanner <name> = new Scanner( <String>);

� Example:

String text = "15  3.2 hello   9  27.5";
Scanner scan = new Scanner(text) ;
System.out.println(scan.nextInt());      // 15
System.out.println(scan.nextDouble());   // 3.2
System.out.println(scan.next());         // hello



Copyright 2008 by Pearson Education
27

Tokenizing lines of a file

// Counts the words on each line of a file
Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);

// process the contents of this line
int count = 0;
while (lineScan.hasNext()) {

String word = lineScan.next();
count++;

}
System.out.println("Line has " + count + " words");

}

Line has 6 words

Line has 3 words

The quick brown fox jumps over

the lazy dog.

Output to console:Input file input.txt :



Copyright 2008 by Pearson Education
28

Hours answer corrected
// Processes an employee input file and outputs 

each employee's hours data.
import java.io.*;    // for File
import java.util.*;  // for Scanner

public class Hours {
public static void main(String[] args) 

throws FileNotFoundException {
Scanner input = new Scanner(new

File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new 

Scanner(line);
int id = lineScan.nextInt ();          

// e.g. 456
String name = lineScan.next();        

// e.g. "Brad"


