Building Java Programs

Chapter 5:
Program Logic and Indefinite Loops

Lecture 5-1: whi | e Loops,
Fencepost Loops, and Sentinel Loops

Copyright 2008 by Pearson Education

" The Big Picture

e Looping is crucially important in most programs
 knowing the common patterns saves programming time

e Often, the programmer doesn't know how long to loop for

» most applications soliciting user input
« game loop

e web servers

- =

Copyright 2008 by Pearson Education

Fencepost loops

reading: 4.1

self-check: 2
exercises: 2, 4, 5, 8

==

~ " Copyright 2008 by Pearson Education

A ncepost problem

* Write a method pri nt Nunber s that prints each number
from 1 to a given maximum, separated by commas.

For example, the call:
pri nt Nunmber s(5)

should print:
B Res s S P s

- =

Copyright 2008 by Pearson Education

=

e public static void printNunbers(int nmax) {
for (int i =1; i <= max; i++) {
Systemout.print(i+"");

}

Systemout.printin(); //toendthe line of output

}
o Output from pri nt Nunbers(5): 1, 2, 3, 4, 5,

® public static void printNunbers(int nmax) {

ForCLnt S s sl 1 s=amaX it s)]
Systemout.print(","+I);
}
Systemout.println(); //toend the line of output
}
o Output from print Nunbers(5): , 1, 2, 3, 4, 5

- =

Copyright 2008 by Pearson Education

—

==

; Copyright 2008 by Pearson Education

—

Fece post analogy

e We print n numbers but need only n - 1 commas.
e Similar to building a fence with wires separated by posts.

» If we repeatedly place a post+wire,
the last post will have an extra dangling wire.

» A flawed algorithm:
for (length of fence) {
place a post.
place some wire.

/

Fecepost loop

 Add a statement outside the loop to place the initial "post.™
» Also called a fencepost loop or a "loop-and-a-half" solution.

e The revised algorithm:
place a post.
for (length of fence - 1) {
place some wire.
place a post.

/

==

; Copyright 2008 by Pearson Education

—

" Fencepost method solution

e A version of pri nt Nunber s that works:

public static void printNunbers(int nmax) {
System.out.print(1);
for Cint I = 2; i <= max; i++) {
Systemout.print(", " +1);

}

Systemout.println(); //toend theline

}

Output from pri nt Nunber s(5) :
120 304,05

4 Copyright 2008 by Pearson Education

—

~ A second solution

» Either the first or the last "post" can be taken out of the loop:

public static void printNunbers(int max) {

for (int i =1; i<max ; i++) {
Systemout.print(i+"")

}

System.out.printin(max); // end line

}

* The output is identical; pick the one that makes most sense to you

- =

Copyright 2008 by Pearson Education

- -

Fencepost question

* Write a method pri nt Pri nes that prints all prime numbers
up to a given maximum in the following format.

« Example: print Prines(50) prints
[2:0 3500, il ¥ A3 i L 955235572973 753 =41 4324 (]

e To find primes, write a method count Fact ors which

returns the number of factors an integer has

e count Fact or s(60) returns 12 because
1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60 are factors of 60.

10
Copyright 2008 by Pearson Education

Fencepost answer

public class Prines {
public static void main(String[] args) {
printPrinmes(50);
printPrinmes(1000);

}

// Prints all prime numbers up to the given max.
public static void printPrinmes(int max) {
Systemout.print("[2");

for (int i =3; i <= max; i++) {
| f (countFactors(i) == 2) {
Systemout.print(", " +i);
}
}

Systemout.printin("]");

11

- =

Copyright 2008 by Pearson Education

—

e e — e

Fencepost answer, continued

// Returns how many factors the given number has.
// Note: this is also in Ch4-1 slides
public static int countFactors(int nunber) {
I nt count = O;
for (int 1 =1; 1| <= nunber; I++) {
| f (nunber %i == 0) {
count ++; //1is a factor of number
}
}

return count;

==

12

G Copyright 2008 by Pearson Education

—

whi | e loops

reading: 5.1

self-check: 1 - 10
exercises: 1 - 2

==

~ " Copyright 2008 by Pearson Education

" Definite loops

o definite loop: executes a known number of times.
» The f or loops we have seen so far are definite loops.

» Examples:
o Print "hello" 10 times.

« Find all the prime numbers up to an integer n.
e Print each odd number between 5 and 127.

—— 14
j"___ Copyright 2008 by Pearson Education

" Indefinite loops

e indefinite loop: the number of times its body repeats is
not known in advance.

» The whi | e loops we'll see in this chapter are indefinite loops.

» Examples:

« Prompt the user until they type a non-negative number.
o Print random numbers until a prime number is printed.

« Continue looping while the user has not typed "n" to quit.

e 5
B! Copyright 2008 by Pearson Education

- =

The whi | e loop

 while loop: Executes as long as a test is true.

while (<test>) {

<statement(s)> ;

}

e Example:

I nt num = 1; //initialization

while (num <= 200) { /] test
Systemout.print(num+ " ");
num = num * 2; // update

}

« OUTPUT:

1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education

execute the
controlled statement(s)

execute statement
after while loop

16

" for vs whil e loops

* The f or loop is a specialized form of the whi | e loop.
» Equivalent:

for (int num= 1; num<= 200; num= num?* 2) {
Systemout. print(num+ " ");

}

Int num = 1;

while (num <= 200) {
Systemout. print(num+ " ");
num = num * 2;

o Stylistically, it is better to use a f or loop when looping
over a series of values

S E

Copyright 2008 by Pearson Education

L

/I finds number's first factor other than 1

Scanner consol e = new Scanner(Systemin);

Systemout.print("Type a nunber: ");
| Nt nunber = console.nextInt();
I nt factor = 2;
while (number % factor != 0) {
factor++;

}

Systemout.printin("First factor: "

e Example log of execution:

Type a nunber: 91
First factor: 7

- =

Copyright 2008 by Pearson Education

+ factor);

T ple = IOOp

18

“whi | e loop question

* Write code that repeatedly prompts until the user types a

non-negative number, then computes its square root.

 Example log of execution:

Type a non-negative integer: -5
| nval id nunber, try again: -1
| nval i d nunber, try again: -235
| nval i d nunber, try again: -87
| nval I d nunber, try again: 121
The square root of 121 is 11.0

- -

Copyright 2008 by Pearson Education

19

S E

whi | e loop answer

e Solution:

Systemout.print("Type a non-negative integer: ");
| nt nunber = console.nextint();

while (number < 0) {
Systemout.print("lnvalid nunber, try again:
nunber = console.nextlnt();

}

Systemout.println("The square root of " + nunber
" 1s " + Math.sqgrt(hnumber))5

» Notice that nunber has to be declared outside the loop.

Copyright 2008 by Pearson Education

e

+

20

Sentinel loops

reading: 5.1

self-check: 5
exercises: 1, 2

==

~ " Copyright 2008 by Pearson Education

" Sentinel values

» sentinel: A value that signals the end of user input.

» sentinel loop: Repeats until a sentinel value is seen.

» Example: Write a program that repeatedly prompts the user
for numbers until the user types 0, then outputs their sum.

(In this case, 0 is the sentinel value.)

Enter a nunber (0 to quit): 95
Enter a nunber (0 to quit): 87
Enter a nunber (0 to quit): 42
Enter a nunber (0 to quit): 26

Enter a nunber (O to quit): O
The total is 250

22

- -

Copyright 2008 by Pearson Education

- =

" Flawed sentinel solution

» What's wrong with this solution?

Scanner consol e = new Scanner (Systemin);
Il nt sum = O;
| nt nunmber = 1; /["dummy value", anything but O

while (nunmber !'= 0) {
Systemout.print("Enter a nunber (0 to quit): ");
nunber = consol e.nextint();
sum = sum + nunber;

}

Systemout.println("The total Is " + sum;

23

Copyright 2008 by Pearson Education

- A different sentinel value

* Modify your program to use a sentinel value of -1.

Enter a nunber (-1 to quit): 95
Enter a nunber (-1 to quit): 87
Enter a nunber (-1 to quit): 42
Enter a nunber (-1 to quit): 26
Enter a nunber (-1 to quit): -1
The total 1s 250

24

- =

Copyright 2008 by Pearson Education

* To see the problem, change the sentinel's value to -1:

Scanner consol e = new Scanner(Systemin);
Il nt sum = O;
I nt nunber = 1; //"dummy value", anything but -1

while (nunmber = -1) {

Systemout.print("Enter a nunber (-1 to quit):

nunber = consol e. nextlint();
sum += nunber

}

Systemout.println("The total Is " + sum;

* Now the solution produces the wrong output. Why?
The total was 249

- -

Copyright 2008 by Pearson Education

- Changing the sentinel value

Sk

P

"The proble

e Our code uses a pattern like this:
sum = 0.
while (input is not the sentinel) {
prompt for input; read input.
add input to the sum.

/

* On the last pass, the sentinel -1 is added to the sum:
prompt for input; read input (-1).
add input (-1) to the sum.

e This is a fencepost problem.
» We must read N numbers, but only sum the first N-1 of them.

26

- -

Copyright 2008 by Pearson Education

- A fencepost solution

* We need to use a pattern like this:

sum = 0.
prompt for input; read input. // place a "post”

while (input is not the sentinel) {
add input to the sum. // place a "wire"
prompt for input; read input. // place a "post”

7

» Sentinel loops often utilize a fencepost "loop-and-a-half”
solution by pulling some code out of the loop.

27

- =

Copyright 2008 by Pearson Education

Correct code

e This solution produces the correct output:

Scanner consol e = new Scanner (System i n);
Il nt sum = O;

System.out.print("Enter a number (-1 to quit): ");

Int number = console.nextint();

while (number = -1) {
sum = sum + number; // moved to top of loop
Systemout.print("Enter a nunber (-1 to quit): ");
nunber = consol e. nextlnt();

}

Systemout.printin("The total is " + sum;

28

- =

Copyright 2008 by Pearson Education

-~

Costant with sentinel

e A better solution uses a constant for the sentinel:
public static final int SENTINEL = -1;

e This solution uses the constant:

Scanner console = new Scanner (Systemin);

I nt sum = O;

Systemout.print("Enter a nunber (" + SENTINEL + " to quit):
I nt nunber = console.nextlnt();

whil e (nunber != SENTINEL) {
sum = sum + nunber:;

Systemout.print("Enter a nunber (" + SENTINEL + " to quit):
nunber = console.nextint();

}

Systemout.println("The total is " + sum;

Copyright 2008 by Pearson Education

5

Lo

29

