Building Java Programs

Chapter 1:
Introduction to Java Programming

~ " Copyright 2008 by Pearson Education

s o

e comments

e procedural decomposition (static methods)
» structured algorithms
 identifiers, keywords, and comments
» producing complex output and figures

- =

Copyright 2008 by Pearson Education

—

Comments

e comment: A note written in the source code by the
programmer to make the code easier to understand.

« Comments are not executed when your program runs.

* Syntax:
/I <comment text, on one line>
or,

[* <comment text; may span multiple lines> */

e Examples:
/I This is a one-line comment.

[* This is a very long
multi-line comment. */

- -

Copyright 2008 by Pearson Education

- Using comments

* Where to place comments:
» at the top of each file (a "comment header")
» at the start of every method (seen later)
» to explain complex pieces of code

e Comments are useful for:
» Understanding larger, more complex programs.

e Multiple programmers working together, who must
understand each other's code.

Copyright 2008 by Pearson Education

- =

—

Comments example

[* Suzy Student, CS 101, Fall 2019
This program prints lyrics from my favorite song! *
public class BaWitDaBa {
public static void main(String[] args) {
/] first verse
System.out.printin("Bawitdaba");
System.out.printin("da bang a dang diggy diggy");

System.out.printin();
/l second verse

System.out.printin("diggy said the boogy");
System.out.printin("said up jump the boogy");

Copyright 2008 by Pearson Education

Procedural decomposition
(static methods)

reading: 1.4
self-check: 16-25
exercises: #5-10

|

==

" Algorithms

* algorithm: A list of steps for solving a problem.

e Example algorithm: "Bake sugar cookies"

]

—

Mix the dry ingredients.

Cream the butter and sugar.

Beat in the eggs.

Stir in the dry ingredients.

Set the oven temperature.

Set the timer.

Place the cookies into the oven.

Allow the cookies to bake.

Spread frosting and sprinkles onto the cookies.

~_ Copyright 2008 by Pearson Education

* lack of structure: Many tiny steps, tough to remember.

e redundancy: Consider making a double batch...
e Mix the dry ingredients.
e Cream the butter and sugar.
» Beat in the eggs.
e Stir in the dry ingredients.
o Set the oven temperature.
e Set the timer.
» Place the first batch of cookies into the oven.
o Allow the cookies to bake.
e Set the timer.
» Place the second batch of cookies into the oven.
o Allow the cookies to bake.
e Mix ingredients for frosting.

—

Copyright 2008 by Pearson Education

" Problems with algorithms

" Structured algorithms

* structured algorithm: Split into cohesive tasks.
1 Make the cookie batter.

Mix the dry ingredients.

Cream the butter and sugar.

Beat in the eggs.

Stir in the dry ingredients.

2 Bake the cookies.

Set the oven temperature.

Set the timer.

Place the cookies into the oven.
Allow the cookies to bake.

3 Add frosting and sprinkles.
e Mix the ingredients for the frosting.
e Spread frosting and sprinkles onto the cookies.

—

Copyright 2008 by Pearson Education

ReOVi ng redunda NCy

* A well-structured algorithm can describe repeated tasks
with less redundancy.

1. Make the cookie batter.
e Mix the dry ingredients.

2a. Bake the cookies (first batch).
e Set the oven temperature.
e Set the timer.

2b. Bake the cookies (second batch).

3. Decorate the cookies.

- =

Copyright 2008 by Pearson Education

—

" A program with redundancy

public class BakeCookies {
public static void main(String[] args) {
System.out.printin("Mix the dry ingredients.");
System.out.printin("Cream the butter and sugar.");
System.out.printin("Beat in the eggs.");
System.out.printin("Stir in the dry ingredients.");
System.out.printin("Set the oven temperature.");
System.out.printin("Set the timer.");
System.out.printin("Place a batch of cookies into th e oven.");
System.out.printin("Allow the cookies to bake.");
System.out.printin("Set the oven temperature.");
System.out.printin("Set the timer.");
System.out.printin("Place a batch of cookies into th e oven.");
System.out.printin("Allow the cookies to bake.");
System.out.printin("Mix ingredients for frosting.");
System.out.printin("Spread frosting and sprinkles.") ;

S — 11
: Copyright 2008 by Pearson Education

/// e
Static methods

o static method: A named group of statements.

« denotes the structure of a program
« eliminates redundancy by code reuse

o procedural decomposition:
dividing a problem into methods

— Copyright 2008 by Pearson Education

class

method A

statement
statement
statement

method B

statement
statement

method C

statement
statement
statement

~ Using static methods

e Design the algorithm.
» Look at the structure, and which commands are repeated.
» Decide what are the important overall tasks.

* Declare (write down) the methods.
» Arrange statements into groups and give each group a name.

e Call (run) the methods.

 The program’'s main method executes the other methods to
perform the overall task.

- -

Copyright 2008 by Pearson Education

—

/Il Step 1: Make the cake batter.
System.out.printin("Mix the dry ingredients.");
System.out.printin("Cream the butter and sugar.");
System.out.printin("Beat in the eggs.");
System.out.printin("Stir in the dry ingredients.");

Il Step 2a: Bake cookies (first batch).
System.out.printin("Set the oven temperature.");
System.out.printin("Set the timer.");
System.out.printin("Place a batch of cookies into th
System.out.printin("Allow the cookies to bake.");

/] Step 2b: Bake cookies (second batch).
System.out.printin("Set the oven temperature.");
System.out.printin("Set the timer.");
System.out.printin("Place a batch of cookies into th
System.out.printin("Allow the cookies to bake.");

/I Step 3: Decorate the cookies.
System.out.printin("Mix ingredients for frosting.");
System.out.printin("Spread frosting and sprinkles.")

Copyright 2008 by Pearson Education

/I This program displays a delicious recipe for bak
public class BakeCookies2 {
public static void main(String[] args) {

Ing cookies.

e oven.");

e oven.");

14

- -

DIaring methods

» Declaring a method gives it a name so it can be executed.

e Syntax:

public static void <name> () {
<statement>;
<statement>;

Estatement>;

}

e Example:

public static void printWarning() {
System.out.printin("This product causes cancer");
System.out.printin("in lab rats and humans.");

15
Copyright 2008 by Pearson Education

Calling methods

Calling a method executes the method's code.
* You can call the same method many times if you like.

e Syntax:

<name> ();

Example:
printWarning();

o Output:

This product causes cancer
In lab rats and humans.

S — 16
: Copyright 2008 by Pearson Education

Prgram with static method

public class FreshPrince {
public static void main(String[] args) {

rap(); /[Calling (running) the
rap method.
System.out.printin();
: rap(); // Calling the rap method
again.
}

// Declaring a method named ‘rap' here.
public static void rap() {

System.out.printin("Now this is the story all
about how");

_ System.out.printin("My life got flipped turned
upside-down");

}

- Output:

4 Copyright 2008 by Pearson Educatipn

L=

p e |

/I This program displays a delicious recipe for bak
public class BakeCookies3 { ;
public static void main(String[] args) {

makeBatter();

bake8; /l 1st batch
bake(): /l 2nd batch
decorate();

/I Step 1: Make the cake batter.

public static void makeBatter() { :
System.out.println("Mix the dry ingredients.");
System.out.printin("Cream the butter and sugar.");
System.out.printin("Beat in the eggs.");
System.out.printin("Stir in the dry ingredients.");

}

/I Step 2: Bake a batch of cookies.

public static void bake() {
System.out.printin("Set the oven temperature.");
System.out.printin("Set the timer.");
System.out.printin("Place a batch of cookies into th
System.out.printin("Allow the cookies to bake.");

}

/Il Step 3: Decorate the cookies.

public static void decorate() {
System.out.printInS'Mix ingredients for frosting.");
System.out.printin("Spread frosting and sprinkles.")

- =

Copyright 2008 by Pearson Education

" Final cookie program

Ing cookies.

e oven.");

18

~ Methods calling methods

public class MethodsExample {
public static void main(String[] args) {
messagel();
message2();
System.out.printin("Done with main.");

}

public static void messagel() {
System.out.printin("This is messagel.");
}

public static void message?2() {
System.out.printin("This is messageZ2.");
messagel();
System.out.printin("Done with message2.");

}
}
e Qutput:
This is messagel.
This is messageZ2.
This is messagel.
Done with messageZ2.

Done with main.

Copyright 2008 by Pearson Education

Control flow

e When a method is called,

the program's execution...

e "jumps" into that method, executing its statements, then

* "jumps" back to the poin

public class MethodsExample {

t where the method was called.

E)ublic static void messagel() {

> System.out.printin("This is messagel.");

public static void main(String[] args)
messagel();
)
message2();

| public static void message2() {

)

> System.out.printin("This is message2.");

messagel();

ystem.out.printin("Done with message2.");

S

lic/static void messagel() {
System.out.printin("This is messagel.");

- -

Copyright 2008 by Pearson Education

20

- When to use methods

* Place statements into a static method if:
» The statements are related structurally, and/or
» The statements are repeated.

e You should not create static methods for:
* An individual printin statement.
» Only blank lines. (Put blank printin s in main .)

» Unrelated or weakly related statements.
(Consider splitting them into two smaller methods.)

- -

Copyright 2008 by Pearson Education

H to comment methods

* Provide a short description of the method's behavior.
* Do not describe the syntax/statements in detail.

e Example:

// This method prints the lyrics to the first verse

Il of my favorite TV theme song.

// Blank lines separate the parts of the verse.

public static void versel() {
System.out.printin("Now this is the story all about how");
System.out.printin("My life got flipped turned upsid e-down");
System.out.printin();
System.out.printin("And I'd like to take a minute,") ;
System.out.printIn("just sit right there");
System.out.printin("I'll tell you how | became the p rince");
System.out.printin("of a town called Bel-Air");

S E

Copyright 2008 by Pearson Education

Drawing complex figures
with static methods

reading: 1.5
(Ch. 1 Case Study: DrawFigures)

exercises: #7-9
programming projects: #1-4

|

- Static methods question

* Write a program to print these figures using methods.

ot

/ \

\ /
\ /

\ /
\ /

i +
Jad

/ \

| STOP |

\ /
\ /
i

/ \

. S— +

; Copyright 2008 by Pearson Education

—

Delopment strategy

e Some steps we can use to print complex figures:

G First version (unstructured):

\ /

\ ; = Create an empty program with a skeletal
\ / header and main method.

\ /

= Copy the expected output into it, surrounding
each line with System.out.println syntax.

= Run our first version and verify that it
\ / produces the correct output.

Copyright 2008 by Pearson Education

Program version 1

public class Figures1 {
public static void maln(Strlng[] args) {
System.out.printin("
System.out.printin(" / \");
System.out.printin(*/ \\");
System.out.printin("\\ I");

System.out.printin(" \\ I");
System.out.printin();
System.out.printin("\\ ");
System.out.printin(" \\ I");
System.out.printin("+-------- +");
System.out.println();
System.out.printin(* "),

System.out.printin(" / \\");
System.out.printin("/ \");
System.out.printin("| STOP [");
System.out.printin("\\ I");
System.out.printin("\\ __ /");
System.out. prlntln()
System.out.printin("
System.out.printin(" / \");
System.out.printin(*/ \\");
System.out.printin("+-------- +");

}

- -

Copyright 2008 by Pearson Education

Delopment strategy 2

(\ : Second version (structured with redundancy):
: / « Identify the structure of the output.
\\ : / = Divide the main method into several static
g T methods based on this structure.
Y
/ \
| STOP |
\ /
\ /
N
[\
| +

Copyright 2008 by Pearson Education

Oput structure

(\ / The structure of the output:
\ / « initial "egg" figure
\ / = second "teacup" figure
S = third "stop sign" figure

« fourth "hat" figure
I\
f STSP | This structure can be represented by methods:
! = egg

= teaCup
P = StopSign
i ______ \ N = hat

Copyright 2008 by Pearson Education

Program version 2

public class Figures2 {
public static void main(String[] args) {

public static void egg() {

egg();
teaCup();

stopSign();
hat();

System.out.printIn(");
System.out.printin(" / \");
System.out.printin("/ \\%);

System.out.printin("\\ ");

System.out.printin(" \\ I");

\ System.out.printin();

public static void teaCup() {
System.out.printin("\\ I");
System.out.printin(" \\ ");
System.out.printin("+--------)5

System.out.printin();

Copyright 2008 by Pearson Education

Program version 2, cont'd.

public static void stopSign() {

}

System.out.printin(* _");
System.out.printin(" / \\");
System.out.printin("/ \\");
System.out.printin("| STOP |")
System.out.printin("\\
System.out.printin(" \\ /')
System.out.printin();

public static void hat() {

System.out. prlntln(" Sk
System.out.printin(" / \\");
System.out.printin(*/ \\");
System.out.printin("+-------- 1)

Copyright 2008 by Pearson Education

Delopment strategy 3

2y Third version (structured without redundancy):
\ /

! / « Identify redundancy in the output, and create
\\ / / methods to eliminate as much as possible.
yerererieh +

= Add comments to the program.

L
/ \
| STOP |
\ /

\ /

i
[\

S +

Copyright 2008 by Pearson Education

Oput redundancy

[\
(\ / The redundancy in the output:

: = egg top: reused on stop sign, hat
\\ /’ = egg bottom: reused on teacup, stop sign
— « divider line: used on teacup, hat
,’ t This redundancy can be fixed by methods:
{ STOP | / - eggTop
\ / = eggBottom

= line
[\
/o
S +

Copyright 2008 by Pearson Education

—

/[Suz
/I Prin

ts

Program version 3

Student, CSE 138, Spring 2094
several figures, with methods for structu

public class Figures3 { _
public static void main(String[] args) {

W
?laot?); Ign();

I/l Draws the top half of an an egg figure.

public static void eggTo

System.out.println 01
AN,

System.out.printin(" =
System.out.printin(*"/ \%);

// Draws the bottom half of an egg figure.
public static void eggBottom() {

System.out.pr!ntlng"\\ /9
System.out.printin(" \\ ");

/l Draws a complete eqgg figure.
public sta_Fc void egg() ?
eggTop();

eggBottom():
S?/gtem.out(.)println();

Copyright 2008 by Pearson Education

re and redundancy.

~_ Copyright 2008 by Pearson Education

—

- Program version 3, cont'd.

// Draws a teacup figure.
public static void teaCup() {
lg-ggl?ottom();
ine();
Sysgem.out.println();

}

// Draws a stop sign figure,

public static void stopSign() {
egglop(); e
System.out.printin("| STOP |");
eggBottom();
System.out.printin();

I/l Draws a figure that looks sort of like a hat.
public static void hat() {

AR

// Draws a line of dashes.
public static void Ime? {
In(ll+

System.out.printin(*+-------- +):

