
1

1

Inheritance

Readings: 9.1

2

Writing classes

� Write an Employee class with methods that return 
values for the following properties of employees at a 
particular company:

� Work week: 40 hours
� Annual salary: $40,000

� Paid time off: 2 weeks
� Leave of absence form: Yellow form

3

Employee class

// A class to represent employees
public class Employee {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}
}

4

Writing more classes

� Write a Secretary class with methods that return 
values for the following properties of secretaries at a 
particular company:

� Work week: 40 hours
� Annual salary: $40,000
� Paid time off: 2 weeks
� Leave of absence form: Yellow form

� Add a method takeDictation that takes a string 
as a parameter and prints out the string prefixed by 
"Taking dictation of text: ".

5

Secretary class

// A class to represent secretaries
public class Secretary {

public int getHours() {
return 40;           // works 40 hours / week

}

public double getSalary() {
return 40000.0;      // $40,000.00 / year

}

public int getVacationDays() {
return 10;           // 2 weeks' paid vacation

}

public String getVacationForm() {
return "yellow";     // use the yellow form

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

6

Why are they very similar?

// A class to represent employees
public class Employee {

public int getHours() {
return 40;

}

public double getSalary() {
return 40000.0;

}

public int getVacationDays() {
return 10;

}

public String getVacationForm() {
return "yellow";

}
}

// A class to represent secretaries
public class Secretary {

public int getHours() {
return 40;

}

public double getSalary() {
return 40000.0;

}

public int getVacationDays() {
return 10;

}

public String getVacationForm() {
return "yellow";

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: "

+ text);
}

}



2

7

Is-a relationship

� is-a relationship: A hierarchical connection where 
one category can be treated as a specialized 
version of another.

� Examples:
� Every secretary is an employee.
� Every dog is a mammal.

� Every refrigerator is an appliance.

8

Reusing code: why re-invent the wheel?

� code reuse: The practice of writing program code 
once and using it in many contexts.

� We'd like to be able to say the following:

// A class to represent secretaries
public class Secretary {

<copy all the contents from Employee class>

public void takeDictation(String text) {
System.out.println("Taking dictation of text: "

+ text);
}

}

9

Inheritance

� inheritance: A way to specify a relationship 
between two classes where one class inherits the 
state and behavior of another.

� The child class (also called subclass) inherits from 
the parent class (also called superclass).

� The subclass receives a copy of every field and 
method from the superclass.

10

Inheritance syntax

� Creating a subclass, general syntax:
public class <subclass name> extends <superclass name> {

� Example:
public class Secretary extends Employee {

....

}

� By extending Employee , each Secretary object 
receives a getHours , getSalary , getVacationDays , 
and getVacationForm method automatically.

11

Improved Secretary class

// A class to represent secretaries
public class Secretary extends Employee {

public void takeDictation(String text) {
System.out.println("Taking dictation of text: "

+ text);
}

}

12

Writing even more classes

� Write a Marketer class that represents marketers 
who have the same properties as general employees, 
but instead of making only a paltry $40,000, marketers 
make $50,000!

� Can we still leverage the Employee class or do we 
have to re-write everything, because one method 
(getSalary ) is different?

� If only Marketer could write a new version of the 
getSalary method, but inherit everything else…



3

13

Overriding methods

� override: To write a new version of a method in a 
subclass to replace the superclass's version.

� To override a superclass method, just write a new 
version of it in the subclass.  This will replace the 
inherited version.

14

Marketer class

// A class to represent marketers

public class Marketer extends Employee {

public void advertise() {

System.out.println("Act now while supplies last!");

}

public double getSalary() {

return 50000.0;          // $50,000.00 / year

}

}

15

Based in reality or too convenient?

� At many companies, all new employees attend a 
common orientation to learn general rules (e.g., what 
forms to fill out when).

� Each person receives a big manual of these rules.

� Each employee also attends a subdivision-specific 
orientation to learn rules specific to their subdivision 
(e.g., marketing department).

� Everyone receives a smaller manual of these rules.

16

Rules, rules, everywhere

� The smaller manual adds some rules and also 
changes (read: overrides) some rules from the large 
manual (e.g., "use the pink form instead of the yellow 
form")

17

Why bother with separate manuals?

� Why not just have a 22-page manual for lawyers, 
21-page manual for secretaries, 23-page manual for 
marketers, etc…?

18

Advantages of separate manuals

� maintenance: If a common rule changes, only the 
common manual needs to be updated.

� locality: A person can look at the manual for lawyers 
and quickly discover all rules that are specific to 
lawyers.



4

19

Key ideas

� It is useful to be able to specify general rules that 
will apply to many groups (the 20-page manual).

� It is also useful to specify a smaller set of rules for a 
particular group, including being able to replace 
rules from the overall set (e.g., "use the pink form 
instead of the yellow form").

20

Exercise: LegalSecretary

� Write a LegalSecretary class that represents 
legal secretaries—a special type of secretary that 
can file legal briefs.  Legal secretaries also earn 
more money ($45,000).

21

Solution: LegalSecretary

// A class to represent legal secretaries

public class LegalSecretary extends Secretary {
public void fileLegalBriefs() {

System.out.println("I could file all day!");

}

public double getSalary() {
return 45000.0;          // $45,000.00 / year

}
}

22

Inheritance hierarchies

� Deep hierarchies can be created by multiple levels 
of subclassing.

� inheritance hierarchy: A set of classes connected 
by is-a relationships that can share common code.

23

Exercise: Lawyer

� Lawyers are employees that know how to sue.  They 
get an extra week of paid vacation (a total of 3) and 
have to use the pink form when applying for 
vacation leave.  Write the Lawyer class.

24

Solution: Lawyer

// A class to represent lawyers
public class Lawyer extends Employee {

// overrides getVacationForm from Employee class
public String getVacationForm() {

return "pink";
}

// overrides getVacationDays from Employee class
public int getVacation() {

return 15;          // 3 weeks vacation
}

public void sue() {
System.out.println("I'll see you in court!");

}
}



5

25

Polymorphism

Readings: 9.2

26

Motivation

� Given the following:
Lawyer laura = new Lawyer();

Marketer mark = new Marketer();

� Write a program that will print out the salaries and 
the color of the vacation form for each employee.

27

Polymorphism

� A reference variable of type T can refer to an object 
of any subclass of T.

Employee person = new Lawyer();

� polymorphism: The ability for the same code to be 
used with several different types of objects and 
behave differently depending on the type of object 
used.

28

Properties of polymorphism

Employee person = new Lawyer();

System.out.println(person.getSalary());        // 4 0000.0

System.out.println(person.getVacationForm());  // " pink"

� You can call any method from Employee on the 
person variable, but not any method specific to 
Lawyer (such as sue ).

� Once a method is called on the object, it behaves in 
its normal way (as a Lawyer , not as a normal 
Employee ).

29

Polymorphism and parameters

public class EmployeeMain {
public static void main(String[] args) {

Lawyer laura = new Lawyer();
Marketer mark = new Marketer();
printInfo(laura);
printInfo(mark);

}

public static void printInfo( Employee empl) {
System.out.println("salary = " + empl.getSalary());
System.out.println("days = " + empl.getVacationDays( ));
System.out.println("form = " + empl.getVacationForm( ));
System.out.println();

}
}

Output:
salary = 40000.0
vacation days = 15
vacation form = pink

salary = 50000.0
vacation days = 10
vacation form = yellow

30

Polymorphism and arrays

public class EmployeeMain2 {
public static void main(String[] args) {

Employee[] employees = { new Lawyer(), new Secretary(), 
new Marketer(), new LegalSecretary() };

for (int i = 0; i < employees.length; i++) {
System.out.println("salary = " + employees[i].getSalary());
System.out.println("vacation days = " +

employees[i].getVacationDays());
System.out.println();

}
}

}

Output:
salary = 40000.0
vacation days = 15

salary = 40000.0
vacation days = 10

salary = 50000.0
vacation days = 10

salary = 45000.0
vacation days = 10



6

31

Exercise 1

public class Foo {
public void method1() {

System.out.println("foo 1");
}

public void method2() {
System.out.println("foo 2");

}

public String toString() {
return "foo";

}
}

public class Bar extends Foo {
public void method2() {

System.out.println("bar 2");
}

}

public class Baz extends Foo {
public void method1() {

System.out.println("baz 1");
}

public String toString() {
return "baz";

}
}

public class Mumble extends Baz {
public void method2() {

System.out.println("mumble 2");
}

}

� Assume that the following four classes have been declared:

32

Exercise 1

� What would be the output of the following client code?

Foo[] pity = { new Baz(), new Bar(),
new Mumble(), new Foo() };

for (int i = 0; i < pity.length; i++) {
System.out.println(pity[i]);
pity[i].method1();
pity[i].method2();
System.out.println();

}

33

Diagramming polymorphic code

34

Finding output with tables

Baz

toString

method2

method1

MumbleBarFoomethod

baz

foo 2

baz 1

Baz

bazfoofootoString

mumble 2bar 2foo 2method2

baz 1foo 1foo 1method1

MumbleBarFoomethod

baz

baz 1

Baz

footoString

mumble 2bar 2foo 2method2

foo 1method1

MumbleBarFoomethod

35

Solution 1

� The code produces the following output:

baz
baz 1
foo 2

foo
foo 1
bar 2

baz
baz 1
mumble 2

foo
foo 1
foo 2

36

Exercise 2

public class Lamb extends Ham {
public void b() {

System.out.println("Lamb b");
}

}

public class Ham {
public void a() {

System.out.println("Ham a");
}

public void b() {
System.out.println("Ham b");

}

public String toString() {
return "Ham";

}
}

public class Spam extends Yam {
public void a() {

System.out.println("Spam a");
}

}

public class Yam extends Lamb {
public void a() {

System.out.println("Yam a");
}

public String toString() {
return "Yam";

}
}

� Assume that the following four classes have been declared:



7

37

Exercise 2

� What would be the output of the following client code?

Ham[] food = { new Spam(), new Yam(),
new Ham(), new Lamb() };

for (int i = 0; i < food.length; i++) {
System.out.println(food[i]);
food[i].a();
food[i].b();
System.out.println();

}

38

Diagramming polymorphic code

39

Finding output with tables

Yam

toString

b

a

SpamLambHammethod

Yam

Lamb b

Yam a

Yam

YamHamHamtoString

Lamb bLamb bHam bb

Spam aHam aHam aa

SpamLambHammethod

Yam

Yam a

Yam

HamtoString

Lamb bHam bb

Spam aHam aa

SpamLambHammethod

40

Solution 2

� The code produces the following output:

Yam
Spam a
Lamb b

Yam
Yam a
Lamb b

Ham
Ham a
Ham b

Ham
Ham a
Lamb b


