Text processing

Readings: 4.4 (pg. 235 — 237)

‘ Characters

= char : A primitive type representing single characters.

= Individual characters inside a String are stored as char
values.

= Literal char values are surrounded with apostrophe
(single-quote) marks, suchas'a’ or'4" or\n'" or'\"

= Like any other type, you can create variables, parameters,
and returns of type char .

char letter ='S";
System.out.printin(letter); /'S

‘ Fun with char |

= char values can be concatenated with strings.
char initial ='P";
System.out.printin(initial + ". Diddy");

= You can compare char values with relational operators.
L oa< and 'Q'1=q
o Caution: You cannot use these operators on a String !

= Example:
/I print the alphabet
for (charc ='a’; c <="7'; c++) {
System.out.print(c);
}

‘ The charAt method

= The characters of a string can be accessed using the
String object's charAt method.

o Recall that string indices start at 0.

String word = console.next();
char firstLetter = word.charAt(0) ;
if (firstLetter =="'c') {

System.out.printin("C is for cookie!");

\ char vs. String

= 'h" isachar
charc="h";
o char values are primitive; you cannot call methods on them
o can't say c.length() or c.toUpperCase()

= "h" is a String

String s = "h";
o Strings are objects; they contain methods that can be called
o can say s.length() 1
o can say s.toUpperCase() "H"
o can say s.charAt(0) 'h'

wl

| Text processing

= text processing: Examining, editing, formatting text.

= Text processing often involves for loops that examine the
characters of a string one by one.

= You can use charAt to search for or count occurrences of
a particular character in a string.

Text processing: Example

/I Returns the count of occurrences of c in s.
public static int count(String s, char c) {

int count =0;
for (int i=0;i<s.ength(); i++) {
if (s.charAt(i) ==c){
count++;
}
}

return count;

count("mississippi”, i) returns 4

String s and char s: Exercises

Recall the String methods

Method name Description
charAt(index) returns the character at the given index
indexOf(str) returns the index where the start of the given

string appears in this string (-1 if not found)

length() returns the number of characters in this string

substring(index1, index2) returns the characters in this string from
index1 up to, but not including, index2

toLowerCase() returns a new string with all lowercase letters
toUpperCase() returns a new string with all uppercase letters
8

String s and char s: Exercises

Write a method named pigLatinWord that accepts
a String as a parameter and outputs that word in
simplified Pig Latin, by placing the word's first letter
at the end followed by the suffix ay.

o pigLatinWord("hello") prints ello-hay
o pigLatinWord("goodbye") prints oodbye-gay
Solution:

public static void pigLatinWord(String word) {
String pigLatin = word.substring(1, word.length()) +
"-" + word.charAt(0) + "ay";
System.out.printin(pigLatin);

String s and char s: Exercises

Write a method printName that accepts a full
name as a parameter, and prints the last name
followed by a comma, followed by the first name
and middle initial.

printName("Walker Texas Ranger");
would output:

Ranger, Walker T.

10

public static void printName(String fullName) {
int firstBlankindex = fullName.indexOf("*);
String upToMiddlelnitial = fullName.substring(0, fir stBlankindex +2);
String astName = fullNam i lankindex +1,
fullName.length());
int secondBlankindex = middleAndLastName.indexOf(" *) ;
1/ Notice that "secondBlankindex" is used with "mid dleAndLastName" and NOT
1/ *fullName". If you said
I
1/ fullName.substring(secondBlankindex + 1, fullName Jength())
I
I/ you wouldn't get the last name properly. Make s ure you understand
1l why
String lastName = astName. +1,
middleAndLastName.length());
stem.out. +" "+ upT al +"");
}

More text processing: Comparing strings

Objects (such as String , Point , and Color) should be
compared for equality by calling a method named equals .

Example:
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
if (name.equals("Barney")){
System.out.printin("l love you, you love me,");
System.out.printin("We're a happy family!");

12

What happens if you use ==?

Relational operators such as < and == only behave
correctly on primitive values.

o The == operator on String s often evaluates to false even
when the String s have the same letters in them.

Example: WRONG!
String name = console.next();
if (name =="Barney"){
System.out.printin("l love you, you love me,");
System.out.printin("We're a happy family!");
}

This example code will compile, but it will never print the
message, even if the user does type Barney .

13

Optional: Why objects use equals vs. ==

The == operator compares whether two variables contain
the same value.

Question: What do object variables contain?

Answer: Object variables contain addresses.
o Using == checks if two object variables have the same
address (i.e. that they refer to the same object).

14

Optional: Why objects use equals vs. ==

The equals method compares whether two objects have the same
state as each other.

What does the following print?
Point p1 = new Point(3, 8);
Point p2 = new Point(3, 8);

More text processing: Comparing strings

There are more methods of a String object that can be
used in <test> conditions.

Method Description

Point p3 = p2;
if (p1 == p2) { pl

equals(str) whether this string contains exactly the
same characters as the other string

System.out.printin("1");

}
if (p1.equals(p2)) {
System.out.printin("2"); p2

equalsignoreCase(str) |whether this string contains the same
characters as the other, ignoring upper-
vs. lowercase differences

1
it (p2 == p3) {)
System.out.printin("3"); p3

N
&

if (p2.equals(p3)) {
System.out.printin("4");
}

15

startsWith(str) whether this string contains the other's
characters at its start
endsWith(str) whether this string contains the other's

characters at its end

16

Comparing strings: Examples

Hypothetical examples, assuming the existence of various
String variables:

a if(title.endsWith(*M.D.")){
System.out.printin(*What's your number?");

}
a if (fullName.startsWith("Marty")){
) System.out.printin(*"When's " your 13th birthday?");
o if(lastName.equalsignoreCase("lumBerg")){
) System.out.printin("l need your TPS reports!");
o if(name.toLowerCase().indexOf("sr.") >= 0)R
) System.out.printin(*You must be old!");

17

while loops

Readings: 5.1

18

Definite loops

= definite loop: A loop that executes a known number of
times.
o The for loops we have seen so far are definite loops.

= We often use language like
o "Repeat these statements N times."
o "For each of these 10 things, ..."

= Examples:
o Print "hello" 10 times.
o Find all the prime numbers up to an integer n.
o Print each odd number between 5 and 127.

19

‘ Indefinite loops

= indefinite loop: A loop where it is not obvious in advance
how many times it will execute.

= We often use language like
o "Keep looping as long as or while this condition is still true.”
o "Don't stop repeating until the following happens.”

= Examples:
o Print random numbers until a prime number is printed.
o Continue looping while the user has not typed "n" to quit.

‘while loop

= while loop: A control structure that repeatedly performs a test and
executes a group of statements if the test evaluates to true.

= while loop, general syntax:
while (<test>) {
<statement(s)>;
}

= Example:
int number =1;
while (number <= 200) {
System.out.print(number +"");
number *= 2;

}

Output:
1248163264128

21

| Example

= Finds and prints a number's first factor other than 1:

Scanner console = new Scanner(System.in);
System.out.print("Type a number:");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {
factor++;
}

System.out.printin("First factor: " + factor);

Sample run:
Type a number: 91

First factor: 7

23

20
‘ while loop flow chart
is the test true?
\ 4
execute the
controlled statement(s)
execute statement
after while loop
22
for vs. while
= Any for loop of the following form:
for (<initialization>; <test>; <update>) {
<statement(s)>;
}
is equivalent to a while loop of the following form:
<initialization>;
while (<test>) {
<statement(s)>;
<update>;
}
24

for vs. while : Example

= What while loop is equivalent to the following for loop?
for (int i=1;i<=10;i++){
System.out.printin(i + " squared =" + (i * i));

}

Solution:

int i=1;

while (i <= 10) {
System.out.printin(i + " squared =" + (i * i));
i++;

25

Exercise

= Write a program that will repeatedly prompt the user to type
a number until the user types a non-negative number, then
computes its square root.

Example log:

Type a non-negative integer: 5
Invalid number, try again: -1
Invalid number, try again: -235
Invalid number, try again: -87_
Invalid number, try again: 11

The square root of 121 is 11.0

26

‘ Solution

System.out.print(“Type a non-negative integer: *);
int number = console.nextint();

while (number < 0) {
System.out.print(“Invalid number, try again: ");
number = console.nextint();

}

System.out.printin("The square root of " + number +
"is " + Math.sgrt(number));

= Notice that the number variable had to be declared outside
the while loop in order to remain in scope.

Exercise: digitSum

= Write a method named digitSum that accepts an integer
as a parameter and returns the sum of the digits of that
number. You may assume that the number is non-
negative.

Example:
digitSum(29107) returns 2+9+1+0+7 or 19

= Hint: Use the %operator to extract the last digit of a

number. If we do this repeatedly, when should we stop?

28

27
' Solution: digitSum
public static int digitSum(int n) {
int sum =0;
while (n > 0) {
sum +=n % 10; // add last digit to sum
n=n/10; /I remove last digit
}
return sum;
}
29

Sentinel loops

Readings: 5.1

30

‘ Sentinel values

= sentinel: A special value that signals the end of the user's input.
= sentinel loop: A loop that repeats until a sentinel value is seen.

= Example: Write a program that repeatedly prompts the user for
numbers to add until the user types 0, then outputs their sum.
(In this case, 0 is our sentinel value.)

Sample run:
Enter a number (0 to quit): 95
Enter a number (0 to quit): 87
Enter a number (0 to quit): 42
Enter a number (0 to quit): 26
Enter a number (0 to quit):]

The total was 250

31

A solution?

Scanner console = new Scanner(System.in);
int sum =0;
int number = 1; //"dummy value”, anything but 0

while (number != 0) {
System.out.print("Enter a number (0 to quit): ");
number = console.nextlnt();
sum += number;

}

System.out.printin("The total was " + sum);

= Will this work? Why or why not?

32

‘ Using a different sentinel value

= Modify your program to use a sentinel value of -1.

Sample run:
Enter a number (-1 to quit): 95
Enter a number (-1 to quit): 87
Enter a number (-1 to quit): 42
Enter a number (-1 to quit): 26
Enter a number (-1 to quit): -1

The total was 250

33

‘ Changing the sentinel value

= Just change the test value to -1?
Scanner console = new Scanner(System.in);
int sum =0;
int number = 1; // "dummy value", anything but -1

while (number != -1){
System.out.print("Enter a number (-1 to quit): *);
number = console.nextint();
sum += number;

}

System.out.printin(“The total was " + sum);

= Now the solution produces the wrong output! Why?
The total was 249

34

‘ The problem

= The current algorithm:
sum = 0.
while input is not the sentinel:
prompt for input; read input.
add input to the sum.

= On the last pass through the loop, the sentinel value -1 is
added to the sum:
prompt for input; read input (-1).
add input (-1) to the sum.

= What kind of problem is this?

o This is a fencepost problem! We want to read N numbers (N is
not known ahead of time), but only sum the first N - 1 of them.

35

‘ Fencepost solution

= Here is a correct algorithm:
sum = 0.
prompt for input; read input. /I place a "post"
while (input is not the sentinel) {
add input to the sum.
prompt for input; read input.

}

/I place some "wire"
/I place a "post"

36

‘ Sentinel solution

Scanner console = new Scanner(System.in);

int sum =0;

System.out.print("Enter a number (-1 to quit): ");
int number = console.nextint();

while (number !=-1) {
sum += number; /I moved to top of loop
System.out.print("Enter a number (-1 to quit): *);
number = console.nextInt();

}

System.out.printin("The total was " + sum);

‘ I hope you did not forget constants...

= An even better solution creates a constant for the sentinel. Why?
public static final int SENTINEL = -1;

= Using the constant
Scanner console = new Scanner(System.in);
int sum =0;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");
int number = console.nextint();

while (number 1= SENTINEL) {
sum += number;
System.out.print("Enter a number (" + SENTINEL + " to quit): ");
number = console.nextint();

}

System.out.printin("The total was " + sum);

38

'Variant 1: do /while

= do/while loop: A control structure that executes statements
repeatedly while a condition is true, testing the condition at the end
of each repetition.

= do/while loop, general syntax:
do{
<statement(s)>;
} while (<test>);

= Example:
/I prompt until the user gets the right password
String phrase;
do{
System.out.print("Enter the password: ");
phrase = console.nextInt();
} while (Iphrase.equals("abracadabra");

37
Indefinite loop variations
Readings: 5.4
39
‘ do/while loop flow chart
¢ = How does this differ from
o the while loop?
cnntro?r:;l;tzter:ent(s) Rl o The controlled

<statement(s)> will
always execute the first
time, regardless of
whether the <test>is
true or false.

is the test true?

execute statement
after dojwhile loop

41

40
Variant 2: "Forever" loops
= Loops that go on... forever
while (true) {
<statement(s)>;
}
= If it goes on forever, how do you stop?
42

‘ break ing the cycle

= break statement: Immediately exits a loop (for , while
do/while).

= Example:
while (true) {
<statement(s)>;
if (<test>){
break;

<statement(s)>;

}

= Why is the break statementin anif statement?

43

Revisiting the sentinel problem

= Sentinel loop using break :

Scanner console = new Scanner(System.in);
int sum=0;
while (true) {
System.out.print("Enter a number (-1 to quit): ");
int number = console.nextint();
if (number == -1) { // don't add -1 to sum
break;
}

sum += number; // number != -1 here

}

System.out.printin("The total was " + sum);

Random numbers

Readings: 5.1

45

44
'The Random class
= Objects of the Randomclass generate pseudo-random
numbers.
o Class Randomis found in the java.util package.
import java.util.*;
= The methods of a Random object
Method name | Description
nextint() returns a random integer
nextint(max) |returns a random integer in the range [0, max)
in other words, from 0 to one less than max
nextDouble() returns a random real number in the range [0.0, 1.0)
46

‘ Generating random numbers

Random rand = new Random();
int randomNum = rand.nextint(10)
// randomNum has a random value between 0 and 9

= What if we wanted a number from 1 to 10?
int randomNum = rand.nextint(10) + 1

= What if we wanted a number from min to max (i.e. an
arbitrary range)?
int randomNum = rand.nextInt(<size of therange>) + <min>

where <size of the range> equals (<max> - <min> +1)

47

‘ Random questions

= Given the following declaration, how would you get:

o Arandom number between 0 and 100 inclusive?
o Arandom number between 1 and 100 inclusive?

o Arandom number between 4 and 17 inclusive?

48

‘ Random solutions
= Given the following declaration, how would you get:
Random rand = new Random();
o Arandom number between 0 and 100 inclusive?

int random1 = rand.nextint(101);

o Arandom number between 1 and 100 inclusive?
int random1 = rand.nextint(100) + 1;

o Arandom number between 4 and 17 inclusive?
int random1 = rand.nextint(14) + 4,

49

Exercise: Die-rolling

= Write a program that simulates the rolling of two six-sided
dice until their combined result comes up as 7.

Sample run:
Roll:2+4=6
Roll:3+5=8
Roll: 5+6=11
Roll: 1+1=2
Roll: 4 +3=7
You won after 5 tries!

'Solution: Die-rolling

/I Rolls two dice until a sum of 7 is reached
import java.util5

public class Roll {
public static void main(String[] args) {
Random rand = new Random();

int sum = 0;
int tries = 0;
while (sum 1= 7) {
int roll1 = rand.nextint(6) + 1;
int roll2 = rand.nextint(6) + 1;
sum = roll1 + roll2;
System.out.printin("Roll: " + roll1 + " + " + roll2 +7=" 4 sum);
tries++;

}

System.out.printin("You won after " + tries + " trie sI");

51

‘ True or false?

= boolean : A primitive type to represent logical values.
o Aboolean expression produces either true or false
o The <test> in if/lelse statements, for loops, and while loops
are boolean expressions.

= Like any other type, you can create variables, parameters,
and returns of type boolean .

= Examples:
boolean minor = (age < 21);
boolean iLoveCS = true;

if (minor){
System.out.printin("You can't purchase alcohol!");
}

50
Boolean logic
Readings: 5.2
52
| Logical operators
= Boolean expressions can use logical operators
Operator | Description |Example Result
&& and 9!=6)&&(2<3) true
Il or (2==3)|I(-1<5) true
! not I(7>0) false
54

‘ Truth tables

= Truth tables of each operator used with boolean values p
and q

P q p&&q pllg P 'p
true true true true true false
true false false true false true
false true false true

false false false false

55

Boolean expressions

= What is the result of each of the following expressions?

int x=42;
int y=17;
int z=25;

0 y<x&&y<=z

0 X%2==y%2||x%2==z2%2

0 X<=y+z&&X>=y+2z

o (x<y&&x<z)

9 X+y)%2==0| (- y)%2==0)

= Answers: true , false ,true ,true , false

56

‘ Boolean methods

= There are methods that return boolean values.

Example:
Scanner console = new Scanner(System.in);
System.out.print("Type your name: ");
String line = console.nextLine();

if (line.startswith("Dr."))
System.out.printin("Will you marry me?");

}elseif (line.endsWith(", Esq.")){
System.out.printin("And | am Ted 'Theodore' Logan!")

}

57

‘ Boolean methods

= Methods can return a boolean result.
public static boolean isLowerCaseLetter(char ch) {
if (a'<=ch &&ch <='2'){
return true;
}else{
return false;
}

= Example usage:
String name = "e.e. cummings";
char firstLetter = name.charAt(0);
if (isLowerCaselLetter(firstLetter)
System.out.printin("You forgot to capitalize your na me!");
}

58

‘ Boolean "Zen"

= Methods that return a boolean result often have an if/else
statement:
public static boolean isLowerCaseLetter(char ch) {
if (a'<=ch &&ch <='2){
return true;
}else {
return false;
}
}

= ... butthe if/else is sometimes unnecessary.
o The <test>is a boolean expression; its true /false value is exactly the
value you want to return... so why not just return it directly!

public static boolean isLowerCaseLetter(char c) {
return ('a' <= ¢ && ¢ <='7");

}

Exercises

= Write a method named isVowel that returns whether a particular
character is a vowel (a, e, i, 0, or u). Count only lowercase vowels.
o isVowel('q’) returns false
o isVowel('e") returns true

= Write a method named allDigitsOdd that returns whether every
digit of an integer is an odd number.
o allDigitsOdd(19351) returns true
o allDigitsOdd(234) returns false

= Write a method named countVowels that returns the number of
lowercase vowels in a String
o countVowels("Marty Stepp") returns 2
o countVowels("e pluribus unum”) returns 6

60

10

Exercise

= Write a program that compares two words typed by the user
to see whether they "rhyme" (end with the same last two
letters) and/or alliterate (begin with the same letter)

Sample runs:
(run #1)
Type two words: car STAR
They rhyme!

(run #2)
Type two words: bare bear
They alliterate!

‘ Solution

import java.util;

public class RhymeAliiterate {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Type two words: ");
String word1 = console.next();
String word?2 = console.next();

if (doesRhyme(word1, word2)) {
System.out.printin("They rhyme!");

if (doesAlliterate(word1, word2)) {
System.out.printin("They alliterate!");

62

‘ Exercise

= Write a program that reads a number from the user and tells
whether it is prime, and if not, gives the next prime after it.

Sample runs:
(run #1)
Type a number: 29
29 is prime

(run #2)
Type two numbers: 14
14 is not prime; the next prime after 14 is 17

= As part of your solution, you should write the following methods:
o isPrime :Returns true if the parameter passed is a prime number.
0 nextPrime : Returns the next prime number whose value is greater than
or equal to the parameter passed.

64

(run #3)
Type two words: sell shell
They alliterate!
They rhyme!
61
1l Checks whether two words have the same last two letters,
I/ ignoring case. Assumes that the words have at | east two
1 letters.
public static boolean doesRhyme(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
String last1 = word1.substring(lenl - 2, len1);
String last2 = word2.substring(len2 - 2, len2);
return last1.equalslgnoreCase(last2);
}
/I Checks whether two words start with the same let ter,
Il ignoring case.
public static boolean doesAlliterate(String word1, St ring word2) {
/I make both words lower-case, in case one word
Il starts with a capital letter and the other
I one doesn't
word1 = word1.toLowerCase();
word2 = word2.toLowerCase();
return (word1.charAt(0) == word2.charAt(0));
}
}
63
import java.util.*;
public class Primes {
public static void main(String]] args) {
Scanner console = new Scanner(System.in);
System.out.print("Type a number: *);
int num = console.nextint();
printPrimeStatus(num);
}
1 prints that primality status of a number; if
I it's not prime, it computes the next one and pri nts
Il that too
public static void printPrimeStatus(int num) {
if (isPrime(num)) {
System.out.printin(num + " is prime");
Yelse {
System.out.printin(num + " is not prime; the next pr ime after " + num +
"is " + nextPrime(num));
}
}

‘ Solution

I/ returns the next prime that is greater than

Il or equal to NUM

public static int_nextPrime(int num) {
while (tisPrime(num)) {

}

return num;

}

Il returns true if the number given is a prime numb er
public static boolean isPrime(int num) {
if (num <= 1) {
return false;
}

for (int i=2; i < num; i++) {
if (um % i == 0) {
return false;
}

}

return true;

66

11

Exercise

= Modify your program from the previous slide so that it reads two
numbers and tells whether each number is prime, and if not, gives the
next prime after it; also tell whether they are relatively prime (i.e., have
no common factors).

Sample runs:
(run #1)
Type two numbers: 916
9 is not prime; the next prime after 9 is 11
16 is not prime; the next prime after 16 is 17
9 and 16 are relatively prime

(run #2)

Type two numbers: 721

7 is prime

21 is not prime; the next prime after 21 is 23
7 and 21 are not relatively prime

67

‘ Solution

import java.util.*;

Il note the code re-use from Primes.java
public class RelativePrimes {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print(*Type two numbers: *);
int num1 = console.nextint();
int num2 = console.nextint();

printPrimeStatus(num1);
printPrimeStatus(num2);
printRelativePrimeStatus(num1, num2);

}

I prints whether the two given numbers are relativ ely prime to each other
public static void printRelativePrimeStatus(int numl Jint num2) {
System.out.print(num1 + " and " + num2 +" are *);
if (tareRelativelyPrime(numa, num2)) {
System.out.print("not ");

}
System.out.printin(‘relatively prime");

68

‘ Solution

Il returns true if the given numbers are relatively prime
I (i.e. have no common factors)
public static boolean areRelativelyPrime(int numi, in t num2) {
for (int i =2;i <= numd; i++) {
I/ do numbers have a common factor?
if (Num1 % i == 0) && (M2 % i == 0)) {
return false;
}

}

return true;

1 prints that primality status of a number; if
I it's not prime, it computes the next one and pri nts
I/ that too
public static void printPrimeStatus(int num) {

if (isPrime(num)) {

System.out.printin(num + " is prime");

Yelse {

System.out.printin(num +" is not prime; the next pr ime after " + num +
"is " + nextPrime(num));

69

‘ Solution

Il returns the next prime that is greater than
Il or equal to NUM
public static int_nextPrime(int num) {
while (tisPrime(num)) {
num#+;
}

return num;

Il eturns true if the number given s a prime numb er
public static boolean isPrime(int num) {
if (num <= 1) {
return false;
}

for (int i=2;i<num;i++) {
if (num % i == 0) {
return false;
}

}

return true;

70

Exercise: Multiplication tutor

= Write a multiplication tutor program. Example log of execution:
This program helps you practice multiplication
by asking you random multiplication questions
with numbers ranging from 1 to 20
and counting how many you solve correctly.

14*8= 112
Correct!
5+12= 60

Correct!

8*3= 24

Correct!

5*5= 25

Correct!

20%14= 280

Correct!

19*14= 256

Incorrect; the correct answer was 266
You solved 5 correctly.

= Use a class constant for the maximum value of 20.

71

‘ Solution: Multiplication tutor

import java.util*;

Il Asks the user to do multiplication problems and scores them.
public class MultTutor {
public static final int MAX = 20;

public static void main(String] args) {
introduction();
Scanner console = new Scanner(System.in);

/lloop until user gets one wrong

int correct =

while (askQuestion(console)) {
correct++;

}

System.out.printin("You solved " + correct + " corre ctly.");

72

12

‘ Solution: Multiplication tutor

public static void introduction() {
System.out.printin(“This_program helps you practice multiplication”);
System.out.printin("by_asking you random multiplicat ion questions");
System.out.printin(“with numbers ranging from 1 to * ;
System.out.printin("and counting how many you solve correctly.):
System.out.printin();

public static boolean askQuestion(Scanner console) {
I pick two random numbers between 1 and 20 inclusi ve
Random rand = new Random();
int num1 = rand.nextint(MAX) + 1;
int num2 = rand.nextint(MAX) + 1;

System.out.print(num1 + * * * + numz2 + * = *);

int guess = console.nextint();

if (guess == num1 * num2) {
System.out.printin("Correct!”);
return true;

Yelse {

System.out printin(*Incorrect; the correct answer w as"+
(num1* num2));

return false;

73

Reasoning about assertions

Readings: 5.5

‘ Assertions

= assertion: A statement that is either true or false.

Examples:
o Java was created in 1995. (true)
o 10 is greater than 20. (false)

o Humphrey Bogart said "Play it again, Sam" in Casablanca.
(false)

o Marty is 12. (true)
o xdivided by 2 equals 7. (depends on the value of x)

75

74
‘ Reasoning about assertions
= Suppose you have the following
if (x> 3) {
/1 Point A: do something
}else {
/1 Point B: do something else
}
= What do you know at the two different points?
o Isx>3? Always? Sometimes? Never?
76

Reasoning about assertions

System.out.print("Type a nonnegative number: ");
double number = console.nextDouble();
/1 Point A: is number < 0.0 here? (SOVETI MES)

while (number < 0.0) {
/1 Point B is nunber < 0.0 here? (ALWAYS)
System.out.print("Negative; try again: *);
number = console.nextDouble();
/1 Point C is nunber < 0.0 here? (SOVETI MES)

}
// Point D: is nunber < 0.0 here? (NEVER)

77

Debugging with reasoning: What’s wrong?

import java.util.*;

public class BuggyLogin {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

String password = "password";

System.out.print("Enter password: “);

String input = console.next();

while (input != password) {
System.out.printin("Wrong password!");
System.out.print("Enter password: ");
input = console.next();

78

13

Strings are objects—should not use =

import java.util.*;

public class Login {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

String password = "password";

System.out.print("Enter password: ");

String input = console.next();

while (linput.equals(password)){
System.out.printin("Wrong password!");
System.out.print("Enter password: ");
input = console.next();

Assertions: Example 1

public static int mystery(Scanner console) {

}
}
}
79
Assertions: Example 2
public static void mystery(int x, int y) {
int z=0;
/'l Point A
while (x >=y) {
!/l Point B
X-=Y,; X<y X == z==0
// Point C PointA | SOMETIMES | SOMETIMES | ALWAYS
Z++: PointB | NEVER SOMETIMES | SOMETIMES
PointC | SOMETIMES | SOMETIMES | SOMETIMES
} /1 Point D I'pointp | SOMETIMES | SOMETIMES | NEVER
Point E | ALWAYS NEVER SOMETIMES
/1 Point E

System.out.printin(z +" " + x);

81

int prev =0
int count=0;
int next = console.nextInt();
/1 Poi nt
while (next !=0) {
/1 Point B
if (next == prev) {
/1l Point C
count++;
prev = next;
next = ponsole.nextlnt():
} /1 Point D next==0 prev ==0 next == prev
I/ Point E Point A | SOMETIMES | ALWAYS SOMETIMES
return count; Point B | NEVER SOMETIMES | SOMETIMES
} Point C | NEVER NEVER ALWAYS
Point D | SOMETIMES | NEVER SOMETIMES
Point E | ALWAYS SOMETIMES | SOMETIMES
Assertions: Example 3
/lpre :y>=0, post: returns x"y
public static int pow(int x, int y) {
int prod =1;
Il Point A
hil
e > it B y==0 y%2==0
if (y % 2==0) { -
/1 Point C PointA | SOMETIMES SOMETIMES
\j/: 2; PointB | NEVER SOMETIMES
/1 Point D PointC | NEVER ALWAYS
I
Pl poim PointD | NEVER SOMETIMES
d*=X; -
prodrx PointE | NEVER NEVER
1 -
[Pt PointF | SOMETIMES | ALWAYS
y, e PointG | SOMETIMES | SOMETIMES
reumprod; PointH | ALWAYS ALWAYS
}
82

14

