Scanner obijects

Readings: 3.4

Interactive programs

= We have written programs that print console output.

= Itis also possible to read input from the console.
o The user types the input into the console.
o The program uses the input to do something.
o Such a program is called an interactive program.

Interactive programs

= Interactive programs can be challenging.

o Computers and users think in very different ways.
o Users tend to “misbehave”.

WE COULD DESIGN THE OR WE COULD REQUIRE THE | | BEAR IN MAKE TT
PRODUCT WITH A SIMPLE |i| USER TO CHOOSEAMONG | | MIND, WELL spTuey
POINT- AND-CLICK THOUSANDS OF POORLY |, | NEVER MEET WAvE TO
INTERFACE § DOCUMENTED COMMANDS, [¢] A CUSTOMER RepooT
EACH OF WHICH MUST BE ! OURSELVES. AFTER EVERY
) §| Tveep ExacTLy miGHT [}) PO

i ON THE FIRST !

" TRY i

o H

E! s

b 3

2
| Input and System.in
= System.out is an object!
o It has the methods named printin -~ and print ~ for
printing to the console.
= We read input using an object named System.in
o System.in is not intended to be used directly.
o We will use another object, from a class called Scanner ,
to read input from System.in
4

\ Scanner

= Constructing a Scanner object to read the console:
Scanner <name> = new Scanner(System.in);

= Example:

Scanner console = new Scanner(System.in);

wl

\ Scanner methods

= Some methods of Scanner :

Method Description
nextint() reads and returns user input as an int
nextDouble() reads and returns user input as a double
next() reads and returns user input as a String

= Each of these methods pauses your program until
the user types input and presses Enter.
o Then the value typed is returned to your program.

| Using a Scanner object

= Example:
System.out.print("How old are you? "); /I prompt
int age = console.nextint();
System.out.printin("You'll be 40in " + (40 - age)

+"years.");

= prompt: A message printed to the user, telling them
what input to type.

‘ Input tokens

= token: A unit of user input, as read by the Scanner .
o Tokens are separated by whitespace (spaces, tabs, new lines).
o How many tokens appear on the following line of input?
23 John Smith 42.0 "Hello world"

= When the token doesn't match the type the Scanner tries to read,
the program crashes.
o Example:
System.out.print("What is your age? ");
int age = console.nextint();

Sample Run:
What is your age? Timmy
InputMismatchException:
at java.util. Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextint(Unknown Source)

A complete program

import java.util.*; /I 'so that | can use Scanner

public class ReadSomelnput {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print("What is your first name? ");
String name = console.next();

System.out.print("And how old are you? ");
int age= console.nextint();

System.out.printin(name +"is " +age +". That's quite old!");

}

Sample Run:

What is your first name? Marty
How old are you? 12

Marty is 12. That's quite old!

10

7
‘ Importing classes
= Java class libraries: A large set of Java classes
available for you to use.
o Classes are grouped into packages.
o To use the classes from a package, you must include an
import declaration at the top of your program.
= Import declaration, general syntax:
import <package name>.*;
= Scanner is in a package named java.util
import java.util.*;
9
‘ Another complete program
import java.util.*; II'so that | can use Scanner
public class Average {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print(“Please type three numbers: *);
int num1= console.nextint();
int num2 = console.nextint();
int num3 = console.nextint();
double average = (numl + num2 + num3) / 3.0;
System.out.printin(“The average is " + average);
}
}
Sample Run:
Please type three numbers: 8613
The average is 9.0
= Notice that the Scanner can read multiple values from one line.
11

‘ Scanners as parameters

= The main method in the previous program could be better
structured by grouping the collection of numbers into a method.

import java.util.*; /I so that | can use Scanner
public class Average {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");

int numl= console.nextint();
int num2 = console.nextint();
int num3 = console.nextint();

double average = (num1 + num2 + num3) / 3.0;
System.out.printin("The average is " + average);

12

| Scanners as parameters

= To have multiple methods read user input, declare a
Scanner in main and pass it to each method as a parameter.

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
int sum =readSum3(console);
double average = sum/ 3.0;
System.out.printin("The average is " + average);

}
public static int readSum3(Scanner console) {
System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextInt();
int num3 = console.nextint();
return num1 + numz2 + num3;
}

‘ Another complete program: Version 2

= Consider changing the output to include the minimum value:

Please type three numbers 8613
The average is 9.0
The minimum value is 6

= How would we change the previous program?

public static void main(String]] args) {
Scanner console = new Scanner(System.in);
int sum = readSum3(console);
double average = sum / 3.0;
System.out.printin(*The average is " + average):
I/ What goes here?

public static int readSum3(Scanner console) {
System.out.print("Please type three numbers: ");
int numi = console.nextint();
int num2 = console.nextint(;
int num3 = console.nextint();
return num1 + num2 + num3;

14

Methods cannot return more than one valuel!

import java.util.*; // so that | can use Scanner

public class Average {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);

System.out.print("Please type three numbers: ");
int num1 = console.nextInt();
int num2 = console.nextint();
int num3 = console.nextint();

double average = (num1 + num2 + num3) / 3.0;

System.out.printin("The average is " + average);

System.out.printin("The minimum value is " +
Math.min(num1, Math.min(num2, num3)));

15

‘ Exercise: BMI

= A person's body mass index (BMI) is computed as follows:

BmI = VI 703
height

= Write a program that produces the following output:
This program reads in data for two people
and computes their body mass index (BMI)
and weight status.

Enter next person's information:
height (in inches)? 62.5
weight (in pounds)? 130.5

Enter next person's information:
height (in inches)? 58.5
weight (in pounds)? 9

Person #1 body mass index = 23.485824
Person #2 body mass index = 18.487836949375414
Difference = 4.997987050624587

16

‘ Solution: BMI

1l This program computes two people's body mass ind ex (BMI)
Il and compares them. The code uses parameters and retums;

import java.util*; //so that | can use Scanner

public class BMI {
public static void main(String[) args) {
introduction();
Scanner console = new Scanner(System.in);
double bmil = processPerson(console);
double bmi2 = processPerson(console):
outputResults(bmi1, bmi2);

I prints a welcome message explaining the program

public static void introduction() {
System.out.printin(*This program reads in data for t wo people’);
System.out printin(*and computes their body mass ind ex (BMI));
System.out printin(*and weight status.");
System.out printin();

Il report overall results
public static void outputResults(double bmil, double bmi2) {

double difference = Math.abs(bmi1 - bmi2);
System.out printin(*Difference = " + difference);

17

‘ Solution: BMI

Il reads information for one person, computes their BMI, and retumns it
public static double processPerson(Scanner console) {
System.out.printin(“Enter next person’s information:)
System.out.print(*height (in inches)? ");
double height = console.nextDouble()

System.out.print(*weight (in pounds)? *);
double weight = console.nextDouble()
System.out.printin();

double bmi = getBMI(height, weight);
return bmi;

}

Il Computes a person's body mass index based on the ir height and weight
/1 and returns the BMI as its result.
public static double getBMi(doubleheight, double we ight) {

double bmi- = weight / (height * height) * 703;

return bmi;

18

Loop techniques

Readings: 4.1

19

‘ Loop techniques

= Cumulative sum
= Fencepost loops

20

| Adding many numbers

= Consider the following code:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int num1 = console.nextint();

System.out.print("Type a number: ");
int num2 = console.nextint();

System.out.print("Type a number: ");
int num3 = console.nextint();

int sum =numl + num2 + num3;

System.out.printin("The sum is " + sum);

= Any ideas to improve the code?

21

‘ Cumulative sum

= The variables num1, num2, and num3 are unnecessary:

Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int sum = console.nextint();

System.out.print("Type a number: ");
sum += console.nextint();

System.out.print("Type a number: ");
sum += console.nextint();

System.out.printin("The sum is " + sum);

= cumulative sum: A variable that keeps a sum-in-progress and is
updated many times until the task of summing is finished.
a The variable sumin the above code represents a cumulative sum.

22

‘ Cumulative sum

= How could we modify the code to sum 100 numbers?
o Creating 100 copies of the same code would be redundant.

= Anincorrect solution:
Scanner console = new Scanner(System.in);
for (int i=1;i<=100;i++) {
int sum=0;
System.out.print(*Type a number: ");
sum += console.nextint();

}

System.out.printin(“The sum is " + sum); / sum out of scope

23

‘ Cumulative sum loop

= A correct version:

Scanner console = new Scanner(System.in);

int sum=0;

for (int i=1;i<=100; i++) {
System.out.print("Type a number:");
sum += console.nextInt();

}

System.out.printin(“The sum is " + sum);

= Key idea: Cumulative sum variables must always be
declared outside the loops that update them, so that they
will continue to live after the loop is finished.

24

‘ User-guided cumulative sum

= The user's input can control the number of times the loop repeats:

Scanner console = new Scanner(System.in);
System.out.print("How many numbers to add? ");
int count = console.nextint();

int sum=0;

for (int i=1;i<= count ;i++) {
System.out.print("Type a number: ");
sum += console.nextint();

System.out.printin("The sum is " + sum);

Sample Run:

How many numbers to add? 3
Type a number:
Type a number:
Type a number:
The sum is 11

IwioIN

25

‘ Cumulative sum: Exercise

= Write a program that reads input of the number of hours two
employees have worked and displays each employee's total and the
overall total hours.
o The company doesn't pay overtime, so cap any day at 8 hours.

Sample Run:

Employee 1: How many days? 3
Hours? 6

Hours? 12

Hours? 5

Emp\oyee_l's total paid hours = 19

Employee 2: How many days? 2
Hours? 11

Hours? 6

Employee 2's total paid hours = 14

Total paid hours for both employees = 33

26

‘ Cumulative sum: Solution

/I Computes the total paid hours worked by two empl oyees.
/I The company does not pay for more than 8 hours p er day.
/I Uses a "cumulative sum" loop to compute the tota I hours.

import java.util.*;

public class Hours {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);

int hoursl = processEmployee(input, 1);
int hours2 = processEmployee(input, 2);

int total = hours1 + hours2;
System.out.printin("Total paid hours for both employ ees="
+ total);

27

‘ Cumulative sum: Solution

1/ Reads hours information about one employee with the given number.

/I Returns the total hours worked by the employee.

public static int processEmployee(Scanner console, in t number) {
System.out.print("Employee " + number + ": How many days? "),
int days = console.nextint();

I/ totalHours is a cumulative sum of all days' hours worked.
int totalHours = 0;
for (int i =1;i<=days; i++) {
System.out.print("Hours? ");
int_hours = console.nextint();
hours = Math.min(hours, 8); Il cap at 8 hours per day
totalHours += hours;

System.out.printin("Employee "+ number +"'s total paid hours ="
+ totalHours);

System.out.printin();

return totalHours;

28

Fencepost loops
“How do you build a fence?”

Readings: 4.1

29

‘ The fencepost problem

= Problem: Write a static method named printNumbers that
prints each number from 1 to a given maximum, separated
by commas.

= Example:
printNumbers(5)

should print:
1,2,3,4,5

30

‘ A solution?

public static void printNumbers(int max) {
for (int i=1;i<=max; i++){
System.out.print(i+t

}
System.out.printin(); // to end the line

= Output from printNumbers(5)
1,2,3,4,5

31

‘ How about this?

public static void printNumbers(int max) {
for (int i=1;i<=max; i++){
System.out.print(R);
}

System.out.printin(); // to end the line

= Output from printNumbers(5)
1,2,3,4,5

32

‘ The fencepost problem

= We want to print n numbers but need only n - 1 commas.

= Similar to the task of building a fence

o If we repeatedly place a post and wire, the last post has an extra
dangling wire.

o A flawed algorithm:
for (length of fence) {
plant a post.
attach some wire.

33

‘ Fencepost loop

= The solution is to add an extra statement outside the loop
that places the initial "post.”
a This is called a fencepost loop.

o The revised algorithm:
plant a post.
for (length of fence - 1) {
attach some wire.
plant a post.

34

‘ The fencepost solution

public static void printNumbers(int max) {
System.out.print(1);
for (int i= 2; i <= max; i++) {
System.out.print(", " + i);
}
System.out.printin(); // to end the line

= Output from printNumbers(5)
1,2,3,4,5

35

| Fencepost loop: Exercise

= Write a program that reads a base and a maximum power
and prints all of the powers of the given base up to that
max, separated by commas.

Base: 2
Max exponent: 9

The first 9 powers of 2 are:
2, 4,8, 16, 32, 64, 128, 256, 512

36

if /else statements

Readings: 4.2

37

‘ Conditionals

= “If you eat your vegetables, then you can
have dessert.”

= “If you do your homework, then you may
go outside to play, or else you'll be
grounded for life.”

38

‘ The If statement

= if statement: A control structure that executes a block of
statements only if a certain condition is true.

= General syntax:
if (<test>) {
<statement(s)>;

}

= Example:
double gpa = console.nextDouble();
if (gpa >=3.0) {
System.out.printin("Good job! Have a cookie.");

}

39

‘ if statement flow chart

Is the test true?

h 4

execute the
controlled statement(s)

execute statement
after if statement

A

40

‘The if /else statement

= iflelse statement: A control structure that executes one block of
statements if a certain condition is true, and a second block of
statements if it is false. We refer to each block as a branch.

= General syntax:
if(<test>) {
<statement(s)> ;
}else {
<statement(s)> ;

= Example:
double gpa = console.nextDouble();
if (gpa >=3.0) {
System.out.printin("Good job! Have a cookie.");
}else {
System.out.printin("No cookie for you!");

}

41

‘ if /else statement flow chart

Is the test true?

A 4 h 4

execute the 'else’ execute the 'if*
controlled statement(s) controlled statement(s)

execute statement
after if/else statement

A

Y

42

‘ The non-existent loop

= There is no such thing as an “if loop”"—there is no loop!

Is the test true?

execute the '
controlled statement(s)

execute the ‘else’
controlled statement(s)

execute the
controlled statement(s)

execute statement
after ffelse statement

execute statement
after if statement

43

Relational expressions

= The <test>used in anif orif/else statement is the
same kind seen in a for loop.
for (int i=1; i<=10 ;i++){
= These tests are called relational expressions and use the
following relational operators:

Operator Meaning Example Value

== equals 1+1==2 true

I= does not equal 3.21=25 true

< less than 10<5 false
> greater than 10>5 true
<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0>=5.0 true

44

‘ Evaluating relational expressions

= Relational operators have lower precedence than math
operators.
5*7>=3+5* (7- 1)
5%*7 >=3+ 5%*6
35 >= 3+30
35 >=33
true

= Relational operators cannot be "chained" as they can in
algebra.
2<=x <=10
true <=10
error!

45

‘if /else : Exercise

= Write code to read a number from the user and print
whether it is even or odd using an if/else statement.

Example executions:
Type a number: 42
Your number is even

Type a number: 17

Your number is odd

46

| Loops with if /else

= Loops can be used with if/else statements.

int nonnegatives = 0, negatives = 0;
for (int i=1;i<=10;i++){
int next = console.nextint();
if (next >= 0) {
nonnegatives++;
}else {
negatives++;

public static void printEvenOdd(int max) {
for (int i=1;i<=max; i++) {
if (%2 ==0){
System.out.printin(i + " is even");
}else {
System.out.printin(i + " is odd");

47

Errors in coding

= Many students new to if/else write code like this:

int percent = console.nextInt();
if (percent >= 90
System.out.printin(*You got an A!");

if (percent >= 80)
System.out.printin(*You got a B!");

if (percent >= 70)
System.out.printin(*You gota C!");

if (percent >= 60)
System.out.printin(*You got a D!");
}else{
System.out.printin(*You got an F!");

= What's the problem?

48

‘Nested if /else statements

= Nested if /else statement: A chain of if/else that can select
between many different outcomes based on several tests.

= General syntax:

if(<test>){
<statement(s)> ;

}elseif (<test>) {
<statement(s)> ;

}else {
<statement(s)> ;

}

= Example:
if (number > 0) {
System.out.printin("Positive");
} else if (number < 0) {
System.out.printin("Negative");
}else {
System.out.printin("Zero");

‘Nested if /else wvariations

= A nested if/else can end with an if or anelse .
o Ifit ends with else , one of the branches must be taken.
o Ifitends with if , the program might not execute any branch.

if (<test>){ if (<test>){
<statement(s)>; <statement(s)>;

}else if <test>) { }else if (<test>) {
<statement(s)>; <statement(s)>;

}else { }else if ©(<test>) {
<statement(s)>; <statement(s)>;

} }

49
Nested if /else flow chart
if (<test>){
<statement(s)>;
}elseif (<test>) {
<statement(s)>;
}else{
<statement(s)>;
}
no statementl
statement3 statement2
51

50
Nested f /elseif flow chart
if (<test>){
<statement(s)>;
}else if (<test>) {
<statement(s)>;
}else if (<test>) {
<statement(s)>;
} statementl
52

‘ Nested if /else variations

if (place == 1) {
System.out.printin("You win the gold medal!");
} else if (place == 2) {
System.out.printin("You win a silver medal!");
} else if (place == 3) {
System.out.printin("You earned a bronze medal.");

= Are there any cases where this code will not print a
message?

= How could we modify it to print a message to non-
medalists?

‘ Sequential if flow chart

if(<test>){

<statement(s)>;
}
if(<test>){
<statement(s)>;
}
if (<test>){
<statement(s)>;
}

‘Surnmary: if /else structures

= Choose exactly 1 set of statements = Choose 0, 1, or more set of statements

it <test>){
<statement(s)>;

if(<test>){
<statement(s)>;

Yelseif (<tests){
<statement(s)>;

Yelse {
<statement(s)>;

}

}
it <test>){
<statement(s)>;

}
it <test>){

if(<test>){
<statement(s)>;

55

‘ Which if /else construct to use?
= Reading the user's GPA and printing whether the student is on
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)
= Printing whether a number is even or odd

= Printing whether a user is lower-class, middle-class, or upper-
class based on their income

= Determining whether a number is divisible by 2, 3, and/or 5

= Printing a user's grade of A, B, C, D, or F based on their
percentage in the course

56

‘ Which if /else construct to use?

= Reading the user's GPA and printing whether the student is on
the dean's list (3.8 to 4.0) or honor roll (3.5 to 3.8)
if / else if
= Printing whether a number is even or odd
if / else
= Printing whether a user is lower-class, middle-class, or upper-
class based on their income
if / else if / else
= Determining whether a number is divisible by 2, 3, and/or 5
if / if / if
= Printing a user's grade of A, B, C, D, or F based on their
percentage in the course
if / else if / else if / else if / else

57

The if /else hammer

= Just because you learned a new construct does not mean that
every new problem has to be solved using that construct!

int z; int z = Math.max(x, y);
if (x>y){
zZ=X;
}else {
=Yy,
}

double d = a; double d = Math.min(a, Math.min(b, c));
if (b <dd) L

) ;
if(c<d
I} (c <):{C;

58

Factoring if/else

Readings: 4.3 (pg. 230 — 232)

Factoring if/else

= factoring: extracting common/redundant code

= Factoring if/else code reduces the size of the if and
else statements

= Factoring tips:
o If the start of each branch is the same, move it before the if/else
o If the end of each branch is the same, move it after the if/else

60

Factoring: Before

if (money < 500) {
System.out.printin("You have, $" + money + " left.")
System.out.print("Caution! Bet carefully.");
System.out.print("How much do you want to bet? ");
bet = console.nextint();

} else if (money < 1000) {
System.out.printin(*You have, $" + money + " left.")
System.out.print("Consider betting moderately.");
System.out.print("How much do you want to bet? ");
bet = console.nextint();

}else {
System.out.printin("You have, $" + money + " left.")
System.out.print("You may bet liberally.");
System.out.print("How much do you want to bet? ");
bet = console.nextlnt();

61

Factoring: After

System.out.printin(*You have, $" + money + " left.")

if (money < 500) {

System.out.print("Caution! Bet carefully.");

} else if (money < 1000) {

System.out.print("Consider betting moderately.");

}else {

}

System.out.print("You may bet liberally.");

System.out.print(*How much do you want to bet? ");
bet = console.nextint();

Subtleties of If /else

Readings: 4.3 (pg. 225 — 226)

63

' Variable initialization

= The solution:

String message;
if (gpa >=3.0){
message = "Welcome to the UW!";
} elseif (gpa >=2.0){
message = "Have you considered applying to WSU?";
} else { //lgpa <2.0
message = "l hear Harvard still needs students...";
}

System.out.printin(message);

65

62
‘ Variable initialization
String message;
if (gpa >=3.0){
message = "Welcome to the UW!";
}
if (gpa >=2.0){
message = "Have you considered applying to WSU?";
}
if (gpa <2.0) {
message = "l hear Harvard still needs students...";
}
System.out.printin(message);
= The compiler will complain that "variable message might not
have been initialized" . Why?
64
Return

Methods can return different values under different conditions:

public static int min(int a, int b) {
if (a>b) {
return b;
}else {
return a;
}

}

public static String message(int place) {
if (place == 1) {
return "You won!";
}else {
return "If you're not first, you're last!";
}

66

11

Errors in coding

public static int min(int a, int b) {
if (a>Db){
return b;

= The compiler will complain about a "missing return
statement” . Why?

= ERROR: Not returning a value in every path. In the above
example, whatifa<=b ?

67

‘ How about this?

public static int min(int a, int b) {
if (a>b) {
return b;
}elseif (a<=b) {
return a;
}
}

= It still produces the "missing return statement” error. Why?
a To our eyes, itis clear that all paths (greater, equal, less) do
return a value.
o But the compiler thinks that if/else if code might choose not
to execute any branch, so it refuses to accept this code.

= How can we fix it?

68

‘ Putting it all together: Exercises

= Write a method named countFactors that returns the
number of factors of a given integer.
o For example, countFactors(60) returns 12 because 1, 2, 3,
4,5,6, 10, 12, 15, 20, 30, and 60 are factors of 60.

= Write a method named numUnique that accepts two
integers as parameters and returns how many unique
values were passed.
o For example, numUnique(3, 7) returns 2 because 3 and 7 are
two unique numbers, but numUnique(4, 4) returns 1 because
4 and 4 only represent one unique number.

69

‘ Exercise: Counting primes

= Write a program that prompts the user for a maximum
integer and prints out a list of all prime numbers up to that
maximum. Here is an example log of execution:

Maximum number? 50
2,3,5,7,11,183,17,19, 23, 29, 31, 37, 41, 43, 47
15 total primes

70

‘ Solution: Counting primes

import java.util.*;

public class PrintPrimes {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
printPrimes(getNumber(console));

public static int countFactors(int num) {
int count = 0;
for (int i =1;i<=num;i++){
if (num % i==0) {
count++;
}

}

return count;

71

‘ Solution: Counting primes

public static intgetNumber(Scanner console) {
System.out.print("Maximum number? ");
feturn console.nextint();

}

public static void printPrimes(int max) {
int numPrimes =0;
if (max >= 2) {
System.out.print(2);
numPrimes++;
for (int i=3; i <= max; i++) {
if (countFactors(i) == 2) {
numPrimes++;
System.out.print(", * +i);

}

System.out.printin();
}

System.out.printin(numPrimes + " total primes");
}
}

72

12

Debugging 101

Readings: None

‘ Why won’t it toast?

= You arrive at your dorm after a thought-
provoking lecture of CSE 142. To feed your
brain, you put some bread into your toaster
oven and set the dial for 5 minutes. The
toaster oven ticks away. After
five minutes, the toaster oven
dings. You take the bread out,
but it's not even toasted. What
do you do?

74

73
‘ What’s w with this code?
at’s rong 1th this coder
import java.util.*;
public class Buggy {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("How many numbers to average? ");
int count = console.nextint();
int sum = computeSum(console, count);
System.out.printin("The average is: " + (sum / count)
public static int computeSum(Scanner input, int num) {
int total = 0;
for (int i=1;i<=num;i++) {
System.out.print("#" +i+"");
total = input.nextint();
return total;
}
}
75

| Always remember

= Learn how to use the debugger

o See the notes on the web page under “J/GRASP
Tutorial”

= System.out.printin is your friend. Use it
to print out variables and expressions.
o Example:
System.out.printin("x ="+ x);
76

13

