Parameters

Readings: 3.1

‘ Repetitive figures

= Consider the task of drawing the following figures:

kAR

kkkk

ok ko
* *
ko kkk

Fkikk
* %
* %
Fkikk

= The lines and figures are similar, but not exactly the same.

2

‘ A solution?

public class Stars

. .
public statc void main(Stringl args) = Observation: Methods are

drawLineOf13Stars();

drawLineOf7Stars();

drawLineOf35Stars(); redundant.
draw10x3Box();

draw5x4Box();

publc St vl drauLneor13Sars0(= Would constants help us
System.out.print(*"); solve this problem?

System.out.printin();

public static void drawLineOf7Stars() {
for (int i=1;i<= 7

System.out print(*");

System.out.printin();

public static void drawLineOf35Stars() {
for (int i=1;i<= 35;1+4) {
System.out print(*");

System.out.printin();

Generalizing methods

= What if we had the following?
o drawLine - A method to draw a line of any number of
stars.
o drawBox - A method to draw a box of any size.

drawline |——————» ‘rmkank

o kkkkkkkkkbkk

drawLine

Parameterization

= parameterized method: A method that is given
extra information (e.g. number of stars to draw)
when it is called.

= parameter: A value passed to a method by its
caller.

= To use a parameterized method:
o declare it
= Write a method that accepts parameters
o callit
= Pass the parameter values desired to the method

wl

| Declaring parameterized methods

= Parameterized method declaration syntax:
public static void <name> (<type> <name>) {
<statement(s)>;
}

= The scope of the parameter is the entire method.

= Example:
public static void printSpaces(int count){
for (int i=1;i<= count ; i++) { }count ’s scope
System.out.print(" ");

}

o Whenever printSpaces is called, the caller must specify how many
spaces to print.

| Calling parameterized methods

= passing a parameter: Calling a parameterized method and specifying
a value for its parameter(s).

= Parameterized method call syntax:
<name>(<expression>);

= Example:
System.out.print("*");
print Spaces(7);
System.out.print("**");
int x=3*5;
print Spaces(x + 2);
System.out.printin(“***");

Output:

* *x ok

‘ Passing parameters

= When the parameterized method call executes:
o the value passed to the method is copied into the parameter variable
o the method's code executes using that value

public static void main(String[] args) {

printSpaces(7);
printSpaces(13); k‘

} count:

public static void printSpaces(int count) {
for(int i=1;i<= count ; i++) {

System.out.print(" *);
}

7
‘ Value semantics
= value semantics: When primitive variables (such as int or double)
are passed as parameters, their values are copied into the method's
parameter variable.
o Modifying the method’s parameter variable will NOT affect the the variable
which was passed to the method.
public static void main(String[] args)
int x=23;
strange(x);
System.out.printin("2. x =" + x); /I this x unchanged
}
Output:
public static void strange(int x){
X =X + 1; /I modifies my x 1.x=24
System.out.printin("1. x =" + X); 2.x=23
}
9

Errors in coding

= ERROR: Not passing a parameter to a method that
accepts parameters.

printSpaces(); // ERROR: parameter value required

= ERROR: Passing a parameter of the wrong type.

printSpaces(3.7); // ERROR: must be of type int
0 The parameter must satisfy the domain of the method.

Parameters: Exercise

= Change the Stars program to use parameterized methods.

public class Stars {
public static void main(Stringf] args) {
drawLineOf13Stars();
drawLineOf7Stars();
drawLineOf35Stars();
draw10x3Box();
draw5x4Box();

public static void drawLineOf13Stars() {
for (int i=1;i<=13;i++){
System.out.print("*");

System.out.printin();
public static void drawLineOf7Stars() {
for (int i=1;i<=7;i++){
System.out.print("*");

System.out.printin();

11

10
Parameters: Solution
/1 Prints several lines of stars.
I/l Uses a parameterized method to remove redundancy
public class Stars2 {
public static void main(String[] args) {
drawLi ne(13);
drawLi ne(7);
drawLi ne(35);
}
/I Prints the given number of stars plus a line bre ak.
public static void drawLi ne(int count) {
for (int i=1;i<= count ; i++) {
System.out.print("*");
System.out.printin();
}
}
12

‘ Multiple parameters

= Methods can accept as many parameters as you like.

a When the method is called, it must be passed values for each of
its parameters.

= Multiple parameters declaration syntax:

public static void <name> (<type> <name>,
<type> <name>, ..., <type> <name>){
<statement(s)>;
}

= Multiple parameters call syntax:
<name>(<expression>, <expression>, ..., <expression>);

‘ Multiple parameters: Example

public static void main(String[] args) {
printNunber (4, 9);
print Nunmber (17, 6);
printNunber (8, 0);
printNumber (0, 8);

public static void printNumber(int nunber, int count){
for (int i=1;i<= count ; i++) {
System.out.print(nunber);

}
System.out.printin();

Output:
344444444
171717171717

00000000

14
‘ Multiple parameters: Solution
/1 Prints several lines and boxes made of stars.
/I Third version with multiple parameterized method s.
public class Stars3 {
public static void main(String(] args) {
drawLine(13);
drawLine(7);
drawLine(35);
System.out.printin();
drawBox(10, 3);
drawBox(5, 4);
drawBox (20, 7);
}
Il Prints the given number of stars plus a line bre ak.
public static void drawLine(int count) {
for (int i=1;i<=count; i++) {
System.out.print("*");
System.out.printin();
16

13
‘ Multiple parameters: Exercise
= Write an improved version of the Stars program that
draws its boxes of stars using parameterized methods.
15
| Multiple parameters: Solution
/1 Prints a box of stars of the given size.
public static void drawBox(int width, int height) {
drawkLi ne(wi dth);
for (int i =1; i <= height - 2; i++) {
Systemout. print("*");
printSpaces(width - 2);
Systemout. println(**");
}
drawkLi ne(w dth);
}
11 Prints the given number of spaces.
public static void printSpaces(int count) {
for (int i=1;i<=count; i++) {
System.out.print(" ");
}
}
}
17

Parameter mystery

= What is the output of the following program?
public class Mystery {
public static void main(String[] args) {
int x=5,y=9,2=2;
mystery(z, y, X);
System.out.printin(x +""+y+""+2);
mystery(y, X, z);
System.out.printin(x +""+y+""+2);

0O

0 O

public static void mystery(int x, int z, int y) {
X+

y=x-2*2
Xx=z+1;
System.out.printin(x +""+y+""+2);

18

Exercise

= Rewrite the following program to use parameterized methods:

/I Draws triangular figures of stars.
public class Loops {
public static void main(String[] args) {
for (int i=1;i<=5;i++
for (int = 1;] <=1~ 1;j++)
System.out.print("");

for(int j=1;j<=10- 2 *i+1;j++){
System.out.print("*");

System.out.printin();

for (int i =1;i<=12;i++){
for (int j=1;j<=i- 1;j++)
System.out.print("");
for(int j=1;j<=25- 2*i; j++) {
System.out.print("*");

System.out.printin();

19

‘ Solution

JI Draws triangular figures using parameterized met hods.
public class Loops
public static void main(String[] args) {
triangle(5);
triangle(12);

/I Draws a triangle figure of the given size.
public static void triangle(int height) {
(int i=1; i <= height; i++)
print Spaces(i - 1);
drawLine(2 * height + 1 - 2 * i);

20

‘ Exercises

= Write a method named printDiamond that accepts a height as a
parameter and prints a diamond figure.

= Write a method named multiplicationTable that accepts a
maximum integer as a parameter and prints a table of multiplication
from 1 x 1 up to that integer times itself.

= Write a method named bottlesOfBeer that accepts an integer as
a parameter and prints the "Bottles of Beer" song with that many
verses.
o http://99-bottles-of-beer.net/lyrics.html

21

Methods that return values

Readings: 3.2

22

Return values

= return: To send a value out as the result of a
method, which can be used in an expression.

= Areturn value is like the opposite of a parameter.
= Parameters pass information in from the caller to the method.
= Return values pass information out from a method to its caller.

= How would this be useful?

23

‘]ava's Math class

= Java has a class called Math that has several useful static methods
to perform mathematical calculations.

Method name Description
abs(value) absolute value
cos(value) cosine, in radians
log(value) logarithm base e
log10(value) logarithm base 10

max(valuel, value2) | larger of two values

min(valuel, value2) | smaller of two values

pow(base, exponent) | base to the exponent power

random() random double between 0 and 1
round(value) nearest whole number
sqrt(value) square root

24

| Using the Math class methods

= Math method call syntax:
Math. <method name>(<parameter(s)>)

= Examples:
double squareRoot = Mat h. sqrt (121.0);
System.out.printin(squareRoot); 1111.0

int absoluteValue = Mat h. abs(-50);
System.out.printin(absoluteValue); 1150

System.out.printin(Math.min(3, 7) +2); /I5

o

Notice that the preceding calls are used in expressions;
they can be printed, stored into a variable, etc...

25

Return values

= The Math methods do NOT print results to the console.

= Instead, each method evaluates to produce (or return) a
numeric result, which can be used in an expression.

X

26

‘ Exercises

= Evaluate the following expressions:
o Math.abs(-1.23)

Math.pow(3, 2)

Math.pow(10, -2)

Math.sqrt(121.0) - Math.sqrt(256.0)

Math.ceil(6.022) + Math.floor(15.9994)

Math.abs(Math.min(-3, -5))

U Do oo

= Math.max and Math.min can be used to bound numbers.
Consider an int variable named age.
o What statement would replace negative ages with 0?
o What statement would cap the maximum age to 40?

27

Writing methods that return values

= Declaring a method that returns a value:

public static <type> <name>(<parameters>) {
<statement(s)>;

= Returning a value from a method:

return <expression>;

= Example:
JI Returns the slope of the line between the given points.
public static doubl e slope(int x1, int y1, int x2, int y2){
double dy =y2- y1;
double dx =x2 - x1;
return dy / dx;
}

= Question: What return type have we used up until now?

28

‘ Examples

/I Converts Fahrenheit to Celsius.
public static double fToC(double degreesF) {
return 5.0/ 9.0 * (degreesF - 32);

}
/I Rounds the given number to the given number of d ecimal places.
/I Example: round(3.14159265, 4) returns 3.1416.
public static double round(double value, int places) {
double pow = Math.pow(10, places);
value = value * pow; 1 upscale the number
value = Math.round(value); // round to nearest who le number
value = value / pow; /I downscale the number
return value;
}

29

Errors in coding

= ERROR: Writing statements after a return ~ statement.

public static it increment(int x) {
return (x + 1)
X=x+1; /I ERROR: statement unreachable!
}

= ERROR: Confusing the return variable with a variable in the calling method, AKA
ignoring the return value.

public class RetumExample {
public static void main(String(] args) {
int x=1;
addone(x);
System.out printin(’x ="+ x);

public static int addOne(int x) {
=x+1;

return x;

30

Important! Don’t ignore the return value!

Just because the return variable in the called method has
the same name as the variable in the calling method, they
are NOT the same. Think scope!

public class ReturnExample { public class RetumExample

public static void main(String(] args) { public static void main(String(] args) {
int x=1; int x=1;
addOne(x); x = addOne(x);
System.out printin(’x ="+ x); System.out printin(x ="+ x);

public static intaddOne(int x) { public static int addOne(int x) {
x=x+1; X=x+1
return x; return x;

} }
} }

31

Exercises

Write a method named distanceFromOrigin that
accepts x and y coordinates as parameters and
returns the distance between that (x, y) point and
the origin.

Write a method named attendance that accepts a
number of sections attended by a student, and
returns how many points a student receives for
attendance. The student receives 4 points for each
section up to a maximum of 20 points.

32

Using objects

Readings: 3.3

33

Recall: Data types

type: A category of data values.
o Example: integer, real number, string

Data types are divided into two classes:

o primitive types: Java's built-in simple data types
for numbers, text characters, and logic.
Example: int double

o object types: Coming soon!

34

Object types

So far, we have seen:
o variables, which represent data (categorized by types)
o methods, which represent behavior

object: An entity that contains data and behavior.
o There are variables inside the object, representing its data.
o There are methods inside the object, representing its behavior.

class:

o Basic building block of Java programs (what we have seen so far)
or

o Category or type of object

Class vs. object

Theoretical examples:

o Aclass Person could represent objects that store a name,
height, weight, hair color, 1Q, etc...

o Aclass Laptop could represent objects that store speed,
screen size, color, dimensions, brand, etc...

Examples from Java:

o The class String represents objects that store text
characters.

o The class Point represents objects that store (x, y) data.

36

String objects

Readings: 3.3

37

The Return of the String

string: A sequence of text characters.
o One of the most common types of objects.
o Represented as objects of the class String

String variables can be declared and assigned,
just like primitive values:

String <name> =" <text>";

String <name> = <expression that produces a Stri ng>;

Example:

String hobbit = "Frodo B.";
String point="("+3+","+4+")",

38

String index

The characters in a String are each internally
numbered with an index, starting with O:

Example:
String hobbit = "Frodo B.";

String methods

Recall that objects are data bundled with methods.

Method name Description
charAt(index) returns the character at the given index
indexOf(str) returns the index where the start of the given

string appears in this string (-1 if not found)

length() returns the number of characters in this string

substring(index1, index2) returns the characters in this string from
index1 up to, but not including, index2

character | 'F'

39

toLowerCase() returns a new string with all lowercase letters
toUpperCase() returns a new string with all uppercase letters
40

Calling methods on objects
Since the methods are bundled in the objects, calling these
methods requires specifying which object we are talking to.

Calling a method of an object, general syntax:
<variable>. <method name>(<parameters>)

o The results may vary from one object to another.

Examples:
String hobbit = "Frodo B.";
System.out.printin(hobbi t.length()); //8

String clown = "Homey da Clown";
System.out.printin(clown. | ength()); 1114

41

Madness to the method

The methods that appear to modify a string (substring
toLowerCase , toUpperCase , etc.) actually create and
return a new string.

String s = "skee-lo";
s.toUpperCase();
System.out.printin(s); // output: skee-lo

VS.
String s = "skee-lo";

s = s.toUpperCase();
System.out.printin(s); // output: SKEE-LO

42

Point objects

Readings: 3.3

‘ Constructing objects

= construct: To create a new object.
0 Objects are constructed with the new keyword.

= Constructing objects, general syntax:
<type> <name> =new <type>(<parameters>);

= Examples:
Pointp = new Point(7, -4);
Color orange = new Color(255, 128, 0);

= Q: Wait a minute! Why don’t we construct strings with new?

= A: Strings are one of the most commonly used objects, so they
have special syntax (quotation marks) to simplify their construction.

43
‘ Point object: Construction
= Constructing a Point object, general syntax:
Point <name> =new Point(<x>, <y>);
Point <name> = new Point(); // the origin, (0, 0)
= Examples:
Point p1 = new Point(5, -2);
Point p2 = new Point();
45

44
Point object
= Data stored in each Point object:
Field name Description
the point's x-coordinate
y the point's y-coordinate
= Useful methods in each Point object:
Method name Description
distance(p) how far away the point is from point p
setLocation(X, y) [sets the point's x and y to the given values
translate(dx, dy) |adjusts the point's x and y by the given amounts
46

‘ Using Point objects: Example

To use the Point class, you
have to import it from the
java.awt package in Java.
public class PointMain { Certain classes like String
public static void main(S_tring[_| args) { are automatically imported,
/I construct two Point objects and thus don't need an

Point p1 = new Point(7, 2); import statement.
Point p2 = new Point(4, 3); p -

import java.awt.*;

11 print each point and their distance apart

System.out.printin(“plis " + p1);

System.out.printin("p2: (" + p2.x + ", " + p2y +" ")
System.out.printin("distance =" + pl.distance(p2));

/I translate the point to a new location

p2.translate(1, 7);

System.out.printin("p2: (" + p2.x + ", " + p2y +" ")
System.out.printin("distance =" + pl.distance(p2));

47

‘ Using Point objects: Exercise

= Write a method computePerimeter that computes a right triangle's
perimeter given two integer side lengths (a and b).
o The perimeter is the sum of the triangle's side lengths a+b+c .

= Example: Given side lengths of 12 and 5, the method (a, b)
should return 30.0. y

(0, 0) a (a, 0)
48

| Using Point objects: Solution

public static double computePerimeter(int a, int b) {
Point p1 = new Point(); /10,0
Point p2 = new Point(a, b);
double ¢ = pl.distance(p2);
returna + b +c;

} (a, b)

(0,00 a (a, 0)
49

Value vs. reference semantics

Readings: 3.3

‘ Program mystery

= What does this code do?
public static void main(String[] args) {
int a=7;
int b =35;
System.out.printin(a +"" +b);

int temp = a;
a = b;
b = tenp;

System.out.printin(a +"" + b);

51

50
‘ Swapping values
= Swapping is a common operation, so we might want to make it into a
method.
public static void main(String(] args) {
int a=7;
int b=35;
System.out.printin(a +" "+ b);
Il swap a with b
swap(a, b);
System.out.printin(a +" "+ b);
}
public static void swap(int a, int b) {
int tenp = a;
a = b;
b = tenp;
}
= Does this work? Why or why not?
52

‘ Recall: Value semantics

= value semantics: Behavior where variables are copied
when assigned to each other or passed as parameters.
o Primitive types in Java use value semantics.
o Modifying the value of one variable does not affect other.

= Example:
int x=75;
int y=x; //lx=5y=5
y=17; IIx=5y=17
X=8; IIx=8,y=17

‘ Reference semantics

= reference semantics: Behavior where variables refer to a
common value when assigned to each other or passed as
parameters.

o Object types in Java use reference semantics.
o Object variables do not store an object; they store the address of

an object's location in the computer memory. We graphically
represent addresses as arrows.

= Example:
Point p1 = new Point(3, 8);

pl&

{8

54

Reference semantics

= If two object variables are assigned the same object, the
object is NOT copied; instead, the object’s address is
copied.
o As a result, both variables will point to the same object.
o Calling a method on either variable will modify the same object.

= Example:
Point p1 = new Point(3, 8);

Point p2 = p1; . .
p2.setLocation(1, 2); pl X, y: 8

p2

55

Reference semantics: Why?

= Objects have reference semantics for several reasons:
o efficiency: Copying large objects would slow down the program.

o sharing: Since objects hold important state, it's useful to share
an object’s data between methods.

56

‘ Reference semantics: Example

Point p1 = new Point(3, 8);
Point p2 = new Point(2, -4);
Point p3 = p2;

= How many unique objects are there? How do you know that?
o Two, because (non-String) objects are only created with new.

= If we change p3, will p2 be affected and vice versa?

o Yes. p]_ X: y:

p2

p3

L

57

‘ Reference semantics: Example

= If two variables refer to the same object, modifying one of
them will also make a change in the other:

3. transl ate(5, 1);
ystem.out.printin("(* + p2.x + " "+ p2y +")");

o 2]y 2]

pl

p2

NE

p3

Output:
(7.-3)

58

‘ Objects as parameters

= When an object is passed as a parameter, the object is not
copied. The same object is referred to by both the original
variable and the method's parameter.

o If amethod is called on the parameter, it will affect the original
object that was passed to the method.

‘ Objects as parameters: Example

= Example:
public static void main(String[] args) {
Point p1 = new Point(2, 3);
move(pl);

public static void move(Point p) {
p.setLocation(-1, -2);
}

pl

=5

60

10

Introduction to Graphics

Readings: 3G.1 - 3G.3

61

‘ Graphical objects

= To draw pictures, we will use three classes of objects:
o DrawingPanel : A window on the screen.

o Graphics : A"pen"thatcan draw ‘e ten
shapes and lines onto a window.

o Color : The colors the "pen"
uses to draw shapes.

62

| DrawingPanel

= To create a window, construct a DrawingPanel object:

DrawingPanel <name> = new DrawingPanel(<width>, <height>);

= Example:
DrawingPanel panel = new DrawingPanel(300, 200);

| Graphics

= Shapes are drawn using an object of class Graphics

o Just like the Point class, you must place an import
declaration in your program: import java.awt x

o Access it by calling the getGraphics method on your

DrawingPanel

= Example:

Graphics g = panel.getGraphics();

64

| Graphics methods

Method name

Description

drawLine(x1,y1, x2,y2)

draws a line between points (x1, y1), (x2, y2)

drawOval(x, y, width, height)

draws outline of largest oval that fits in a box of
size width * height with top-left corner at (x, y)

drawRect(X, y, width, height)

draws outline of rectangle of size width * height
with top-left corner at (x, y)

drawString(text, x, y)

writes text with bottom-left corner at (x, y)

fillOval(X, y, width, height)

fills largest oval that fits in a box of size width *
height with top-left corner at (x, y)

fillRect(X, y, width, height)

fills rectangle of size width * height with top-left
corner at (x, y)

setColor(Color)

sets Graphics to paint subsequent shapes in
the given color

63
| Using the Graphics object
= Once you have the Graphics object, draw shapes by
calling its methods.
« Example: =I5l
g-fillRect(10, 30, 60, 35);
g.filloval(80, 40, 50, 70); [.
65

66

11

‘ The coordinate system

= Each (x, y) position on the DrawingPanel is represented by a pixel
(picture element).

= The origin (0, 0) is at the window's top-left corner.
o xincreases rightward and y increases downward

= Example:

0,0 ——

(199, 99)

= The DrawingPanel shows the coordinates where your mouse
pointer is located on the bottom of the panel.

67

\ Color

= Colors are specified by constants in the Color class
named: BLACK BLUE CYAN DARK_GRAYGRAY GREEN

LIGHT_GRAY, MAGENTAORANGEPINK, REDQ WHITE and
YELLOW

o Pass these to the Graphics object's setColor method.

= Example: il Help
g.setColor(Col or. BLACK);
g.fillRect(10, 30, 100, 50);
g.setColor(Col or. RED);
g.filloval(60, 40, 40, 70);
68

| Making your own colors

= Colors are defined by three numbers (int s from 0 to 255)
representing the amount of red, green, and blue (RGB).

o More colors can be found here:
http://www.pitt.edu/~nisg/cis/web/cqi/rgb.html

= Example:
DrawingPanel panel = new DrawingPanel(80, 50);
Col or brown = new Col or (192, 128, 64);
panel.setBackground(brown);

69

‘ Background color

= The background color can be set by calling setBackground on the

DrawingPanel

File Help

= Example:

panel.setBackground(Col or. YELLOW; -

= NB: The setBackground method is called on the DrawingPanel
while setColor is called on the Graphics object.

A complete program

import java.awt.*;

public class DrawingExamplel {
public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(300, 200);

Graphics g = panel.getGraphics();
g.fillRect(10, 30, 60, 35); rawing B =1olx|

g.filloval(80, 40, 50, 70); File Help

| ~e

71

70
= Shapes drawn later will appear on top of previous ones.
import java.awt.*;
public class DrawCar {
public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
g.setColor(Color. BLACK); Drawing PaneliSl (= |
g.fillRect(10, 30, 100, 50); Help
I wheels
g.setColor(Color.RED);
g.filloval(20, 70, 20, 20);
g.filloval(80, 70, 20, 20);
e L 1
g.setColor(Color.CYAN); —— |
g.fillRect(80, 40, 30, 20);
}
}
72

‘ Drawing with loops

= We can draw the same item at different x/y positions with for loops.
o The x or y expression contains the loop counter, i , so that in each pass of
the loop, when i changes, so does x ory.

DrawingPanel panel = new DrawingPanel(400, 300);
panel.setBackground(Color.YELLOW);

Graphics g = panel.getGraphics(); ==l
e tow
g.setColor(Color.RED);
for (int i =1; i <=10; i++) {
g.filloval(100 + 20 * i,
5+ 20 * i,50,50);
}
g.setColor(Color.BLUE);
for (int i =1; i <=10; i++) { s
g.drawString("Hello, world!", Slknal”
150- 10 * i,200+ 10 * i);
}

73

‘ Drawing with loops

= Afor loop can also vary a shape's size:
import java.awt.*;

public class DrawCircles {
public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(250, 220);
Graphics g = panel.getGraphics();

‘ Drawing with loops

= The loop in this program affects both the size and shape of
the figures being drawn.

DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();
for (int i=1;i<=10;i++) {
g.drawRect(20 + 10 *i, 5,
200 - 20*i,200- 20 *i);

= Each pass of the loop, the square drawn
becomes 20 pixels smaller in size, and
shifts 10 pixels to the right.

75

g.setColor(Color. MAGENTA); =l
for (int i =1; i <= 10; i++) {
g.drawOval(30, 5, 20 * i, 20 * i)
}
}
}
74
‘ Exercise
= What does the following code draw?
import java.awt.*;
public class DrawingExample2 { ;Iﬂlil
public static final int NUM_CIRCLES = 10; File Help

public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(220, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);
for (int i=1;i<= NUM_CIRCLES; i++) {
g.filloval(15 *i, 15 *i, 30, 30);

g.setColor(Color. MAGENTA);
for (int i =1;i<= NUM_CIRCLES; i++) {
g.filoval(15 * (NUM_CIRCLES
+1- i), 15*i, 30, 30);

}
}
}

76

‘ Counting from 0

= Often, it is useful to start counting from 0 instead of 1.
o The loop test must be changed to < from <=.

= A loop that repeats from 0 to < 10 still repeats 10 times,
just like a loop that repeats from 1 to <= 10.

= When the loop counter variable i is used to set the figure's
coordinates, starting i at 0 will give us the coordinates we
want.

77

‘ Counting from 0: Example

= Draw ten stacked rectangles starting at (20, 20), height 10,
with widths that start at 100 and decrease by 10 each time:

DrawingPanel panel = new DrawingPanel(160, 160);
Graphics g = panel.getGraphics();

IElx
for(int i =0; i < 10;i++){ File Help
g.drawRect(20, 20 + 10 * i,
100 - 10 *i, 10);
}
L]

78

Exercise =[x

File Help

Write variations of the preceding
program that draw the following
figures.

B oroui T

File Help

79

Solution -
File Help
Solution #1:
Graphics g = panel.getGraphics();
for (int i=0;i<10;i++) {
g.drawRect(20 + 10 * i,20+10*i,
100 - 10*i, 10); L 1]
} R
File Help
Solution #2:
Graphics g = panel.getGraphics();
for (int i=0;i<10;i++){
g.drawRect(110 - 10 * i,20+10*i,
10 + 10 * i,10);
} 1
80

Structuring code

Use static methods to structure the code.

a SinceJou'II need to send commands to the "pen" to draw the figure, you
should pass Graphics g as a parameter.

import java.awt.*;

public class DrawCar
public static void main(String]] args) {
g panel = new Drawing (200, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics(;
dr awcar (g) ;

public static void drawCar(Graphics g) {
g.setColor(Color.BLACK);
g-fillRect(10, 30, 100, 50);

g.setColor(Color.RED);
g.filloval(20, 70, 20, 20);
g.filloval(80, 70, 20, 20);

g selColor(Color CYAN) —

g.fillRect(80, 40, 30, 20);

81

Parameterized figures: Translation

If you want to draw the same figure many times,
write a method to draw that figure and accept the x/y
position as parameters.

o Adjust the x/y coordinates of your drawing commands to
take into account the parameters.

File Help

82

Translating figures: Exercise

Modify the previous car-drawing method to work at
any location, so that it can produce an image such
as the following:
o One car's top-left corner is at (10, 30).
o The other car's top-left corner is at (150, 10).

=lC[x]

File Help

83

Translating figures: Solution

import java.awt.*;

public class DrawCar2 {
public static void main(String(] args) {
DrawingPanel panel = new DrawingPanel(260, 100);
panel.setBackground(Color.LIGHT_GRAY);
Graphics g = panel.getGraphics();
drawCar(g , 10, 30);
drawCar(g , 150, 10);

public static void drawCar(Graphics g ,int x, int y){

g.setColor(Color.BLACK);
B prawing panel i

g fillRect(X, Y, 100, 50);
File Help

g.setColor(Color.RED);

gfilRect(x + 70, y + 10,30, 20);

g.filloval(x + 10, y + 40,20, 20);
Sfiiovall < 70,y + 40,50.50) ‘
g.setColor(Color.CYAN); ‘

[

84

14

Parameterized figures: Scaling

= Methods can accept any number of parameters to
adjust the figure's appearance.

= Exercise: Write a new version of the drawCar
method that also allows the cars to be drawn at any
size.
=[olx]

File Help

85

‘ Scaling figures: Solution

import java.awt.*;

public class DrawCar3 {
public static void main(String[] args) {
DrawingPanel panel = new DrawingPanel(210, 100);
panel.setBackground(Color.LIGHT_GRAY);

Graphics g :ganel,getGraph\cs();
drawCarEg‘ 10, 30, 100;:
drawCar(g, 150, 10, 50);

public static void drawCar(Graphics g, int X, int y, int size){
g.setColor(Color.BLACK);

gfilRect(x, y, size, size | 2); ol x|
B Drawing Pa o

g.setColor(Color.RED);
g filloval(x + size /| 10,y+ 2 * size /| 5,
size | 5, size | 5)

g filloval(x + 7 * size | 10, [+ 2% size | 5,
size | 5, size | 5);
g.setColor(Color.CYAN);

gfilRect(x + 7 * size /| 10,y+ size / 10,
3 * size / 10, size / 5);

86

| Parameterized figures: Exercise

= Display the following figures on a
drawing panel of size 300x400:
o top-left figure:

= overall size = 100
= top lftcorner = (10, 10)
= inner rectangle and oval size = 50
= innertop left corner = (35, 35)
o top-right figure:
= overall size = 60
= top lftcorner = (150, 10)
= inner rectangle and oval size = 30
= innertop left corner = (165, 25)
o bottom figure:
= overall size = 140
= top lftcorner = (60, 120)
= inner rectangle and oval size = 70
= innertop left corner = (95, 155)

@ O) CSE 142 Drawing Panel

87

‘ Extra: Animating figures

= DrawingPanel has a method named sleep that pauses your
program for a given number of milliseconds.

= You can use sleep to produce simple animations.
DrawingPanel panel = new DrawingPanel(250, 200);
Graphics g = panel.getGraphics();

g.setColor(Color.BLUE);

for (int i=1;i<=NUM_CIRCLES; i++) {
g.fillOval(15 * i, 15 * i, 30, 30);
panel . sl eep(500);

}

= Try adding sleep commands to loops in past exercises in these
slides and watch the panel draw itself piece by piece!

88

Extra: Drawing polygons

1. Create a Polygon object and add points successively.
Polygon poly = new Polygon();
poly.addPoint(10, 20);
poly.addPoint(100, 40);
poly.addPoint(35, 100);
poly.addPoint(10, 80);

1B Drawing Panel

2. Tell the "pen" to draw (or fill) the polygon.{5e s
g.drawPolygon(poly);
g.fillPolygon(poly);

3. Now draw away!

89

15

