
1

1

WELCOME TO CSE 142!

host: benson limketkai

University of Washington, Spring 2008

2

Who cares about computer science?

-

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Agricultural science Biological science

PhD
Master's
Bachelor's
Projected Job Openings

SOURCES: Tabulated by National Science Foundation/Division of Science Resources Statistics; degree data from Department of Education/National Center for Education Statistics: Integrated Postsecondary Education Data System Completions Survey; and NSF/S RS: Survey of
Earned Doctorates; Projected Annual Average Job Openings derived from Department of Commerce (Office of Technology Policy) analysis of Bureau of Labor Statistics 2002-2012 projections

3

Who cares about computer science?

-

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Mathematics Computer science

PhD
Master's
Bachelor's
Projected Job Openings

SOURCES: Tabulated by National Science Foundation/Division of Science Resources Statistics; degree data from Department of Education/National Center for Education Statistics: Integrated Postsecondary Education Data System Completions Survey; and NSF/S RS: Survey of
Earned Doctorates; Projected Annual Average Job Openings derived from Department of Commerce (Office of Technology Policy) analysis of Bureau of Labor Statistics 2002-2012 projections

4

What is computer science?

� computers?
� science?
� programming?
� late lonely nights in front of the computer?

ALGORITHMIC THINKING

al·go·rithm:
a step- by- step procedure for solving a problem or accomplishing
some end especially by a computer

� How does that relate to programming?

5

Programming is just like Legos…

2

8

Should you take this course?

� No
� “I hate computers.”
� “I don’t pay attention to details.”

� Programming is fairly detail-oriented.

� “I refuse to think logically.”
� “I want to take an easy class.”

� Hard for those who find difficulty in logical thinking and
who don’t pay attention to details.

9

Should you take this course?

� Probably not
� “I want free gourmet meals and to make lots of money by

working for Google.”
� “World of Warcraft rocks hardcore!”

� Yes
� “I have to take this class.”

� Is this the only reason? Are you pursuing the right major?

� “I like to solve problems.”
� “Computers and robots are going to take over the world. I

want to befriend them so that my life will be spared.”

10

11

How to do well in this course

� Keep up with the assignments
� The course material is cumulative
� From a former student: “Procrastination will

eventually come around to bite you in the ass!”

� If you don’t understand something, ask
questions (especially “WHY?”).
� “There’s no such thing as a dumb question.”
� Computers are neither magical nor mysterious.

Everything can be explained!

12

Basic Java programs

Readings: 1.1 – 1.3

3

13

Your first Java program!

� Java is a programming language.

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

� File must be named Hello.java

� What does this code output (print to the user) when
you run (execute) it?

14

Running a program

� Before you run a program, you must compile it.

� compiler: Translates a computer program
written in one language (i.e., Java) to another
language (i.e., byte code)

compile execute

outputsource code
(Hello.java)

byte code
(Hello.class)

15

Program execution

� The output is printed to the console.
� Some editors pop up the console as another

window.

16

Another Java program

public class Hello2 {

public static void main(String[] args) {

System.out.println("Hello, world!");

System.out.println();

System.out.println("This program produces");

System.out.println("four lines of output");

}

}

17

Writing your own Java programs

public class <name> {

public static void main(String[] args) {

<statement>;

<statement>;

…

<statement>;

}

}

� Every executable Java program consists of a class
� that contains a method called main

� that contains the statements (commands) to be executed

18

Syntax

� syntax: The set of legal structures and
commands that can be used.

� Examples:
� Every basic statement ends with a semi-colon.
� The contents of a class occur between curly

braces.

4

19

Syntax Errors

� syntax error: A problem in the structure of a
program.

1 public class Hello {
2 pooblic static void main(String[] args) {
3 System.owt.println("Hello, world!")
4 }
5 }

2 errors found:
File: Hello.java [line: 2]
Error: Hello.java:2: <identifier> expected
File: Hello.java [line: 3]
Error: Hello.java:3: ';' expected

compiler output:

20

Finding syntax errors

� Error messages do not always help us
understand what is wrong:

File: Hello.java [line: 2]

Error: Hello.java:2: <identifier> expected

poo blic static void main(String[] args) {

� Why can’t the computer just say “You
misspelled ‘public’”?

21

First lesson in computer science

� Computers are stupid.
� Computers can’t read minds.
� Computers don’t make mistakes.
� If the computer is not doing what you want,

it’s because YOU made a mistake.

22

More on syntax errors

� Java is case-sensitive
� Hello and hello are not the same

1 Public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

1 error found:
File: Hello.java [line: 1]
Error: Hello.java:1: class, interface, or enum
expected

compiler output:

23

System.out.println

� System.out.println : A statement to print a line
of output to the console.
� pronounced “print-linn”

� Two ways to use System.out.println :
System.out.println("<message>");

� Prints the given message as a line of text to the console.

System.out.println();

� Prints a blank line to the console.

24

Strings

� string: A sequence of text characters.
� Start and end with quotation mark characters

� Examples:

"hello"

"This is a string"

"This, too, is a string. It can be very long!"

5

25

Details about strings

� A string may not span across multiple lines.
"This is not

a legal string."

� A string may not contain a “ character.
� The ‘ character is okay.
"This is not a "legal" string either."

"This is 'okay' though."

� This begs the question…

26

Escape sequences

� A string can represent certain special characters by preceding them
with a backslash \ (this is called an escape sequence).
� \t tab character
� \n newline character
� \" quotation mark character

� Example:
System.out.println("Hello!\nHow are \"you\"?");

� Output:
Hello!
How are "you"?

� This begs another question…

27

Questions

1. What is the output of each of the following println
statements?

System.out.println("\ta\tb\tc");

System.out.println("\\\\");
System.out.println("'");

System.out.println("\"\"\"");
System.out.println("C:\nin\the downward spiral");

2. Write a println statement to produce the following line of
output:

/ \ // \\ /// \\\

28

Answers

1.
a b c

\\

'

"""

C:

in he downward spiral

2.
System.out.println("/ \\ // \\\\ /// \\\\\\");

29

Questions

1. What println statements will generate the following output?

This program prints a
quote from the Gettysburg Address.

"Four score and seven years ago,
our 'fore fathers' brought forth on this continent
a new nation."

2. What println statements will generate the following output?

A "quoted" String is
'much' better if you learn
the rules of "escape sequences."

Also, "" represents an empty String.
Don't forget to use \" instead of " !
'' is not the same as "

30

Answers

1.

System.out.println("This program prints a");
System.out.println("quote from the Gettysburg Addres s.");
System.out.println();
System.out.println("\"Four score and seven years ag o,");
System.out.println("our 'fore fathers' brought forth on");
System.out.println("this continent a new nation.\"") ;

2.

System.out.println("A \"quoted\" String is");

System.out.println("'much' better if you learn");
System.out.println("the rules of \"escape sequences. \"");
System.out.println();
System.out.println("Also, \"\" represents an empty String.");
System.out.println("Don't forget: use \\\" instead o f \" !");
System.out.println("'' is not the same as \"");

6

31

Procedural decomposition

using static methods

Readings: 1.4 – 1.5

32

Algorithms

� Recall: An algorithm is a list of steps for
solving a problem.

What is the algorithm to bake sugar cookies?

33

The “Bake sugar cookies” algorithm

� Mix the dry ingredients.
� Cream the butter and sugar.
� Beat in the eggs.
� Stir in the dry ingredients.
� Set the oven for the appropriate temperature.
� Set the timer.
� Place the cookies into the oven.
� Allow the cookies to bake.
� Mix the ingredients for the frosting.
� Spread frosting and sprinkles onto the cookies.

34

Structured algorithm

1. Make the cookie batter.
� Mix the dry ingredients.
� Cream the butter and sugar.
� Beat in the eggs.
� Stir in the dry ingredients.

2. Bake cookies.
� Set the oven for the appropriate

temperature.
� Set the timer.
� Place the cookies into the oven.
� Allow the cookies to bake.

3. Add frosting and sprinkles.
� Mix the ingredients for the frosting.
� Spread frosting and sprinkles onto

the cookies.

� Observation: Structured
algorithms are easier to
understand.

35

How do we bake a double batch?

Unstructured:
� Mix the dry ingredients.
� Cream the butter and sugar.
� Beat in the eggs.
� Stir in the dry ingredients.
� Set the oven …
� Set the timer.
� Place the cookies into the oven.
� Allow the cookies to bake.
� Set the oven …
� Set the timer.
� Place the cookies into the oven.
� Allow the cookies to bake.
� Mix the ingredients for the frosting.
� Spread frosting and sprinkles onto

the cookies.

Structured:
� 1. Make the cookie batter.
� 2a. Bake the first batch of cookies.
� 2b. Bake the second batch of

cookies.
� 3. Add frosting and sprinkles.

� Observation: Structured
algorithms eliminate
redundancy.

36

Redundancy in programs

public class FraggleRock {
public static void main(String[] args) {

System.out.println("Dance your cares away,");
System.out.println("Worry's for another day.");
System.out.println("Let the music play,");
System.out.println("Down at Fraggle Rock.");
System.out.println();
System.out.println("Dance your cares away,");
System.out.println("Worry's for another day.");
System.out.println("Let the music play,");
System.out.println("Down at Fraggle Rock.");

}
}

7

37

How do we structure the program?

� static method : A group of statements given
a name.

� To use a static method:
1. declare it (write down the recipe)

� Write a group of statements and give it a name.

2. call it (cook using the recipe)
� Tell our program to execute the method.

38

Declaring a static method

� The syntax for declaring a static method (writing
down the recipe):

public class <class name> {
...

public static void <method name>() {

<statement>;

<statement>;

…

<statement>;

}

}

39

Calling a static method

� The syntax for calling a static method
(cooking using the recipe):

<method name>();

40

Static method example

� Declaring a static method
public static void printAffirmation() {

System.out.println("I am good enough!");
System.out.println("I am smart enough!");
System.out.println("People like me!");

}

� Calling a static method (possibly multiple times)
printAffirmation();
printAffirmation();

� Output
I am good enough!
I am smart enough!
People like me!
I am good enough!
I am smart enough!
People like me!

41

Worry’s for another day!

public class FraggleRock {
public static void main(String[] args) {
singChorus();
System.out.println();
singChorus();

}

public static void singChorus() {
System.out.println("Dance your cares away,");
System.out.println("Worry's for another day.");
System.out.println("Let the music play,");
System.out.println("Down at Fraggle Rock.");

}
}

42

� Makes code easier to read by capturing the
structure of the program
� main should be a good summary of the program

public static void main(String[] args) {

}

Note: Longer code doesn’t
necessarily mean worse code

Summary: Why write methods?

public static void main(String[] args) {

}

public static ... (...) {

}

public static ... (...) {

}

8

43

� Eliminate redundancy

public static void main(String[] args) {

}

Summary: Why write methods?

public static void main(String[] args) {

}

public static ... (...) {

}

44

Methods calling methods

� One static method can call another:
public class MethodsExample {

public static void main(String[] args) {
message1();
message2();
System.out.println("Done with main.");

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2.");
message1();
System.out.println("Done with message2.");

}
}

Output:

This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

45

� When a method is called, the execution
� "jumps" into that method
� executes all of the method’s statements
� "jumps" back to the statement after the method call

Control flow of methods

46

public class MethodsExample {
public static void main(String[] args) {

message1();

message2();

...
}

}

Control flow of methods

public static void message1() {
System.out.println("This is message1.");

}

public static void message1() {
System.out.println("This is message1.");

}

public static void message2() {
System.out.println("This is message2");
message1();

System.out.println("Done with message2.");
}

Output:

This is message1.
This is message2.
This is message1.
Done with message2.
Done with main.

47

Summary: To use or not to use…

� Yes
� Statements that are related to each other (structure).
� Statements that are repeated (redundancy).

� No
� Individual statements occurring only once and not related

to other statements
� Unrelated or weakly-related statements

� Consider splitting the method into two smaller methods.
� Blank lines

� Blank println statements can go in the main method.

48

Example: Figure drawing

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

� Write a program to print the figures. Use static
methods to capture structure and and eliminate
redundancy.

9

49

Version 1: Unstructured

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

� Create an empty program with a skeletal header
and main method.

� Copy the expected output into it, surrounding
each line with System.out.println syntax.

� Run and verify that it produces the correct
output.

50

Version 1: Unstructured

// Suzy Student, CSE 142, Autumn 2047
// This program prints several assorted figures.
//
public class Figures1 {

public static void main(String[] args) {
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();
System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

51

Version 2: Structured with redundancy

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

� Identify the overall structure of the output, and
divide the main method into several static
methods based on this structure.

52

Version 2: Structured with redundancy

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

� Identify the overall structure of the output, and
divide the main method into several static
methods based on this structure.

The structure of the output:
� initial "egg" figure
� second "teacup" figure
� third "stop sign" figure
� fourth "hat" figure

This structure can be represented by methods:
� drawEgg
� drawTeaCup
� drawStopSign
� drawHat

53

Version 2: Structured with redundancy

// Suzy Student, CSE 142, Autumn 2047
// Prints several assorted figures, with methods fo r structure.
//
public class Figures2 {

public static void main(String[] args) {
drawEgg();
drawTeaCup();
drawStopSign();
drawHat();

}

// Draws a figure that vaguely resembles an egg.
public static void drawEgg() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

// Draws a figure that vaguely resembles a teacup.
public static void drawTeaCup() {

System.out.println("\\ /");
System.out.println(" ______/");
System.out.println("+--------+");
System.out.println();

}

54

Version 2: Structured with redundancy

// Draws a figure that vaguely resembles a stop sig n.
public static void drawStopSign() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("| STOP |");
System.out.println("\\ /");
System.out.println(" ______/");
System.out.println();

}

// Draws a figure that vaguely resembles a hat.
public static void drawHat() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");
System.out.println("+--------+");

}
}

10

55

Version 3: Structured without redundancy

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

� Further divide the program to eliminate all
redundancy.

56

Version 3: Structured without redundancy

� Further divide the program to eliminate all
redundancy.

The redundancy:
� top half of egg (purple)
� bottom half of egg (green)
� divider line (yellow)

This redundancy can be fixed by methods:
� drawEggTop
� drawEggBottom
� drawLine

/ \

/ \
\ /

______/

\ /
______/

+--------+

/ \

/ \
| STOP |
\ /

______/

/ \

/ \
+--------+

57

Version 3: Structured without redundancy

// Suzy Student, CSE 142, Autumn 2047
// Prints several figures, with methods for structu re and redundancy.

public class Figures3 {
public static void main(String[] args) {

drawEgg();
drawTeaCup();
drawStopSign();
drawHat();

}

// draws redundant part that looks like the top of an egg
public static void drawEggTop() {

System.out.println(" ______");
System.out.println(" / \\");
System.out.println("/ \\");

}

// draws redundant part that looks like the bottom of an egg
public static void drawEggBottom() {

System.out.println("\\ /");
System.out.println(" ______/");

}

58

Version 3: Structured without redundancy

// Draws a figure that vaguely resembles an egg.
public static void drawEgg() {

drawEggTop();
drawEggBottom();
System.out.println();

}

// Draws a figure that vaguely resembles a teacup.
public static void drawTeaCup() {

drawEggBottom();
System.out.println("+--------+");
System.out.println();

}

// Draws a figure that vaguely resembles a stop sig n.
public static void drawStopSign() {

drawEggTop();
System.out.println("| STOP |");
drawEggBottom();
System.out.println();

}

// Draws a figure that vaguely resembles a hat.
public static void drawHat() {

drawEggTop();
System.out.println("+--------+");

}
}

59

Exercise

� Write a program that prints the following output to the console. Use
static methods as appropriate.

I do not like my email spam,
I do not like them, Sam I am!
I do not like them on my screen,
I do not like them to be seen.
I do not like my email spam,
I do not like them, Sam I am!

� Write a program that prints the following output to the console. Use
static methods as appropriate.

Lollipop, lollipop
Oh, lolli lolli lolli

Lollipop, lollipop
Oh, lolli lolli lolli

Call my baby lollipop

60

Exercise

BBBBB
B B
BBBBB
B B
BBBBB

AAAA
A A
AAAAAA
A A

N N
NNN N
N NNN
N N

AAAA
A A
AAAAAA
A A

N N
NNN N
N NNN
N N

AAAA
A A
AAAAAA
A A

� Write a program to print the block letters spelling
"banana". Use static methods to capture
structure and and eliminate redundancy.

11

61

Identifiers: Say my name!

� identifier : A name given to an entity in a program such as a class or
method.
� Identifiers allow us to refer to the entities.

� Examples (in bold):
� public class Hello

� public static void main

� public static void drawEgg

� Conventions for naming in Java (which we will follow):
� classes: capitalize each word (ClassName)
� methods: capitalize each word after the first (methodName)

62

Identifiers: Syntax

� First character must be a letter, underscore (_) or $
� Following characters can be any of those or a number

� Examples:
� legal: susan second_place _myName

TheCure ANSWER_IS_42 $variable
method1 myMethod name2

� illegal: me+u 49er question?
side-swipe hi there ph.d
jim's 2%milk suzy@yahoo.com

� Remember: Java is case-sensitive (name is different from Name)

63

Identifiers: Keywords

� keyword : An identifier that you cannot use, because it already has a
reserved meaning in the Java language.

� Complete list of Java keywords:
abstract default if private t his
boolean do implements protected throw
break double import public throws
byte else instanceof return trans ient
case extends int short try
catch final interface static void
char finally long strictfp volati le
class float native super while
const for new switch
continue goto package synchronized

� NB: Because Java is case-sensitive, you could technically use Class or cLaSs
as identifiers, but this is very confusing and thus strongly discouraged.

64

Comments

� comment : A note written in the source code to make the code easier to
understand.
� Comments are not executed when your program runs.
� Most Java editors show your comments with a special color.

� Comment, general syntax:
/* <comment text; may span multiple lines> */

or,
// <comment text, on one line>

� Examples:
/* A comment goes here. */

/* It can even span
multiple lines. */

// This is a one-line comment.

65

Comments: Where do you go?

� … at the top of each file (also called a "comment header"), naming
the author and explaining what the program does

� … at the start of every method, describing its behavior

� … inside methods, to explain complex pieces of code

66

Comments: Why?

� Comments provide important documentation.

� Later programs will span hundreds or thousands of lines, split into
many classes and methods.

� Comments provide a simple description of what each class, method,
etc. is doing.

� When multiple programmers work together, comments help one
programmer understand the other's code.

12

67

Comments: Example

/* Suzy Student
CS 101, Fall 2019
This program prints lyrics from my favorite song! */

public class MyFavoriteSong {
/* Runs the overall program to print the song

on the console. */
public static void main(String[] args) {

sing();

// Separate the two verses with a blank line
System.out.println();

sing();
}

// Displays the first verse of the theme song.
public static void sing() {

System.out.println("Now this is the story all about how");
System.out.println("My life got flipped turned upsid e-down");

}
}

68

Comments: How-to

� Do not describe the syntax/statements in detail.
� Instead, provide a short English description of the observed behavior

when the method is run.

� Example:
// This method prints the lyrics to the first verse

// of my favorite TV theme song.

// Blank lines separate the parts of the verse.

public static void verse1() {

System.out.println("Now this is the story all about how");

System.out.println("My life got flipped turned upsid e-down");

System.out.println();

System.out.println("And I'd like to take a minute,") ;

System.out.println("just sit right there");

System.out.println("I'll tell you how I became the p rince");

System.out.println("of a town called Bel-Air");

}

69

Style guidelines

� Structure your code properly
� Eliminate redundant code
� Use spaces judiciously and consistently
� Indent properly
� Follow the naming conventions
� Use comments to describe code behavior

70

The importance of proper style

� Programmers build on top of other’s code all the time.
� You shouldn’t waste time deciphering what a method does.

� You should spend time on thinking or coding. You
should NOT be wasting time looking for that missing
closing brace.

� So code with style!

