CSE 142, Spring 2008

Programming Assignment #8: Critters (20 points)
Due: Tuesday, June 3, 2008, 4:00 PM

adapted from Critters assignment by Suart Reges, with ideas from Seve Gribble

This assignment will give you practice with class&sirn inBear.java , Lion.java , Tiger.java
There are several supporting files to downloadhencoburse web site. RuntterMain.java

Program Behavior:
You will be provided with several classes that iempént a graphical * .. =~ - P L
simulation of a 2D world with many animals movingand in it. You will | . : . oEE
write a set of classes that define the behaviothoe animals. Differenf =~ = | .

kinds of animals move and behave in different wayss you write each -* -« * . . *
class, you are defining those unique behaviorgdoh animal. o

, andHusky.java
to start the simulation.

|2/CSE 142 Critter Safari: jackdaw 192.168.1.101 192.168.1.102 192.168.222.... _ |03
- - s

The critter world is divided into cells with integeoordinates. The worldis ~ ~ ~ = .~ w7
60 cells wide and 50 cells tall. The upper-lefi bas coordinates (0, 0), . e Tl :
x increases to the right and y increases downward. : o

- T

Movement
On each round of the simulation, the simulator asksh critter object which direction it wants towao Each round a
critter can move one square north, south, east, westay at its current location. The world bdite size, but it wraps
around in all four directions (for example, moviegst from the right edge brings you back to thieddfe).

This program will probably be confusing at firsedause this is the first time where you do notemiitemain method
(the client code that uses your animals), so yagieds not in control of the overall program's exem. Instead, your
objects become part of a larger systedou might want to have one of your critters make sesral moves at once
using a loop, but you can't do that! The only way a critter moves is to wait for theawslator to ask it for a single move
and return that move. This experience can berétist), but it is a good introduction to objectesried programming.

Fighting

As the simulation runs, animals can collide by mgvbnto the same location. When two animals aglltey fight. The
winning animal survives and the losing animal ikeki. Each animal chooses to roar, pounce, oitdtits opponent
(represented in the code by values namedk.ROAR , Attack.POUNCE , andAttack. SCRATCH). Each of these attacks is
strong against one other attack (e.g. roar beatdchd and weak against another (roar loses toq@unThe following
table summarizes the possible choices and whiamanuill win in each case. To help remember whigats which,
notice that the starting letters obar, munce,_sratch" match those ofdck, mper,_sissors." If the animals make the
same choice, the winner is chosen at random.

Critter #2
Attack. ROAR | At t ack. POUNCE | At t ack. SCRATCH
Att ack. ROAR random winner #2 wins #1 wins
Critter #1 | Attack. POUNCE #1 wins random winner #2 wins
At t ack. SCRATCH #2 wins #1 wins random winner

Eating

The simulation world also contains food (represgtgthe period character,) for the animals to eat. There are pieces
of food on the world initially, and new food slowhyrows into the world over time. As an animal nmvé may
encounter food, in which case the simulator wik gsur animal whether it wants to eat it. Differdsnds of animals
have different eating behavior; some always ea, @hers only eat under certain conditions. Evame one class of
animals eats a few pieces of food, that animal béllput to "sleep” by the simulator for a small amtoof time. While
asleep, animals cannot move, and if they entagtd fiith another animal, they will always lose.

Scoring
The simulator keeps a score for each class of dnghawn on the right side of the screen. A ctassbre is based on
how many animals of that class are alive, how nfaold they have eaten, and how many other animeisiave killed.

1of4

Provided Files:

Each of the four classes you'll write will extendrfi a superclass namedtter . This is an example of inheritance,
which is discussed in detail in Chapter 9 of theélteok. The inheritance makes it easier for owtecto talk to all of your
critter classes, and it also helps us be sureahgbur animal classes will implement all of thettmods we need. But
don't worry; to do this assignment you don't needrtderstand much at all about inheritance. Ydagscheaders should
indicate the inheritance relationship by writiegends Critter in their header, like the following:

public class Bear extends Critter {

-
Thecritter class contains the following five methods, whiclu ynust write in each of your four classes:

* public boolean eat()
When your animal encounters food, our code caifsah it to ask whether it wants to eaitid) or not false).

* public Attack fight(char opponent)
When two animals move onto the same square ofritietgey fight. When they collide, our code cdliss on
each animal to ask it what kind of attack it waltsise in a fight with the given opponent.

* public Color getColor()
Every time the board updates, our code calls thigaur animal to ask it what color it wants to vawin with.

* public Direction getMove()
Every time the board updates, our code calls thigaur animal to ask it which way it wants to move.

* public char getChar()
Every time the board updates, our code calls thigaur animal to ask what letter it should be drasronscreen|

Just by writingextends Critter as shown above, you receive a default versiohegd methods. The default behavior
is to never eat, to always forfeit in a fight, tetthe color black, to always stand still (a mof/Bi@ction.CENTER), and
acharacter of 2* . If you don't want this default behavior, you carite the methods shown above in your class to
replace the default behavior with your own. Thkisalledoverriding the default behavior.

For example, below is a critter class calfeshe . Stone objects are displayed with the letter S, are gnagolor, never
move, never eat, and always choose to roar inta. fiyour classes will look like the class belowgcept with fields, a
constructor, and more sophisticated behavior coilete that thestone does not need to write aat or getMove method;
it uses the default behavior for those operations.

import java.awt.*; // for Color

public class Stone extends Critter {
public Attack fight(char opponent) {
return Attack.ROAR,;

public Color getColor() {
return Color.GRAY;

}

public char getChar() {
return 'S’;

20f4

Critters to Implement:

The following are the four critter classes you viftiplement. Each class must only have one construand that
constructor must accept exactly the parameter@&ribed in the table. For random moves, each pplesshoice must be
equally likely. You may use eithelrandom object or thevath.random method to obtain pseudorandom values.

Bear

Constructor public Bear(bool ean gri zzly)

Color brown (ew Color(190, 110, 50)) for a grizzly bear (whegrizzly istrue),
white (Color WHITE) for a polar bear (when grizzly figlse)

eating behavior always returnsrue

fighting behavior always scratch

movement behavior | alternates between south and east in a zigzagmpatte
(first south, then east, then south, then eagt, ...

getChar B

TheBear constructor accepts a parameter representing/pleecf bear it istrue means a grizzly bear, artse means
a polar bear. Youeear object should remember this and use it later whengetColor is called on th&ear . If the

bear is a grizzly, return a brown colormgav Color(190, 110, 50)), and otherwise a white colaCdjor. WHITE).
Lion
constructor public Lion()
color red (Color.RED)
eating behavior returnsirue if this Lion has been in a fight since it has last eaten
(if fight has been called on thien at least once since the last calt4o)
fighting behavior if opponent is aear (B'), then roar; otherwise pounce

movement behavior | first go north 5 times, then west 5 times, thertls&utimes, then east 5 times
(a counter-clockwise square pattern), then repeats

getChar L

Tiger

constructor public Tiger(int hunger)

color yellow (Color.YELLOW) J I
eating behavior returnsirue the firsthunger times it is called, anthise after that

fighting behavior if this Tiger is still hungry (if a call teat would returnirue), then scratch; —

otherwise pounce

movement behavior | moves 4 steps in a random direction (north, sa#ht, or west),
then chooses a new random direction and repeats

getChar the number of pieces of food thiger still wants to eat, asaar

The Tiger constructor accepts a parameter for the maximumbeu of food thistiger will eat in its lifetime (the
number of times it will returarue from a call toeat). For example, @iger constructed with a parameter value of 8 will
returntrue the first 8 timesat is called andalse after that. Assume that the value passeddager is non-negative
and less than 10 (i.e., a single-digit number).

ThegetChar method for ariger should return th&iger 's remaining hunger; in other words, the numbdinoés that a
call toeat that would returnrue for thatTiger . For example, if aew Tiger(5) is constructed, initially thatiger 's

getChar method should returs” . Aftereat has been called on theger once, calls tgetChar should returrd' , and

so on, until theTiger is no longer hungry, after which all calls detcChar should returno . To turn a single-digit
integer into a character, first concatenate it wlith empty string (") and then get the first clotea charat(0)) of the

resultingstring

Husky
constructor public Husky() (Your constructor must accept no parameters)
all other behavior you decide

30f4

Husky Class:

Part of your grade will be based upon writing dreatind non-trivial behavior in yowusky class. The following are
some guidelines and hints about how to write aer@gtingHusky. There are additional methods that each crittessc
can use through inheritance from thieter class. YouHusky may want to use these methods to guide its behavio

* public int getX() public int getY()
Returns your critter's current x and y coordinates.

* public int getWidth() public int getHeight()
Returns the width and height of the grid world.

* public char getNeighbor(Direction direction)
Returns ahar representing what is next to your critter in tiveg direction.'* means an empty square (or a
critter trying to be invisible).

* public void win() public void lose() public void sl eep()
public void wakeup() public void reset()

Our code calls these methods on your critter tdyngdu when you have won a fight, lost a fightebeput to
sleep, woken up from sleeping, and when the gamkelas reset, respectively.

For example, to check whether your critter's x-dowate is greater than 10, you would write codédhsas:
if (getX() > 10) { I/l ch eck if my x-coordinate is above 10

To check if your neighbor to the west isear , you could write this code in youiusky 's getMove method:
if (getNeighbor(Direction.WEST) =="'B’) { /I check if a Bear is 1 square west of me

Your Husky's fighting behavior may want to utilize the paraendo thefight method,opponent , which tells you what
kind of critter you are fighting against (suchms if you are fighting against Bear).

Your Husky can return any character you like frgechar and any color frongetColor . Each critter'getColor and
getChar are called on each simulation round, so you cae laalusky that displays differently over time. TlgetChar
character is also passed to other animals wherfig@yyourHusky ; you may want to try to fool other animals.

On Wednesday, June 4, we will host a Critter toonerat. In each battle, two studemssky classes will be placed into
the simulator along with the other standard animalth 25 of each type. The simulator will run iimto significant
activity occurs or 1000 moves have passed. Thiestuvhosedusky has the higher score in the right sidebar wing. N
grade points will be based on tournament performarteor example, Busky that sits completely still may fare well in
the tournament, but it will not receive full grageints because it is too trivial.

Implementation Guidelines:

The provided GUI runs even if you haven't compleatidhe critters. The classes increase in difficfrom Bear to Lion
to Tiger . We recommend writingear first. Look atStone.java and the lecture examples to get an idea of thetsire.

Any critter class you write will compile even if ydhave not written all of the required methods fribmcritter class.
You may want to write and test some of the metHiosisand leave others for later.

In the case of each animal, it will be impossildémplement the behavior if you don't have the trigflate in your object.
As you start writing each class, spend some tirimkiting about what state will be needed to achiéeedesired behavior.

Stylistic Guidelines:

Some of the style points for this assignment wélldwarded on the basis of how much energy andiiteatou put into
defining an interestinglusky class. These points allow us to reward the stsdeho spend time writing an interesting
critter definition. YourHusky 's behavior should not be trivial or closely mattht of an existing animal shown in class.

Style points will also be awarded for expressingheaitter's behavior elegantlfencapsulate your objects. Follow past

style guidelines about indentation, spacing, idiemsi, and localizing variables. Place commenthatbeginning of each
class documenting that critter's behavior, andegptammments on any complex code. Your critters Ishioot produce any
console output. For reference, @etr, Lion , andTiger together occupy 168 lines including comments.

4 of 4

