
1 of 5

CSE 142 SPRING 2008 MIDTERM SOLUTIONS

1. Expressions (10 points)
For each expression in the left-hand column, indicate its value in the right-hand column.
Be sure to list a constant of appropriate type (e.g., 7.0 rather than 7 for a double , String s in "quotes"). If the
expression is illegal, then write "error".

Expression Value

1 * 2 * 3 + (4 - 5)

28 % 4 + 18 % 5 % 5 + 9

1000 * 2 + 18 / 2 / 2 * 2

1 / 10.0 + "1" + 17 * 2

0.25 * 2 - 0.5 + 1 / 2

5

12

2008

"0.1134"

0.0

2. Parameter Mystery (20 points)
At the bottom of the page, write the output produced by the following program, as it would appear on the console.

public class ParameterMystery {
 public static void main(String[] args) {
 String farm = "here";
 String old = "macdonald";
 String macdonald = "there";
 String everywhere = "farm";
 String here = "everywhere";
 String there = "old";
 String quack = "duck";

 mystery(macdonald, there, "everywhere");
 mystery(old, macdonald, farm);
 mystery("quack", here, "there");
 mystery(quack, "here", "farm");
 mystery(old, everywhere, there);
 }

 public static void mystery(String macdonald, St ring farm, String old) {
 System.out.println(old + " " + macdonald + " had a " + farm);
 }
}

everywhere there had a old
here macdonald had a there
there quack had a everywhere
farm duck had a here
old macdonald had a farm

2 of 5

3. While Loop Simulation (15 points)
For each call below to the following method, write the output that is printed, as it would appear on the console:

public static void mystery(int a, int b) {
 while (b < a) {
 b = b + 3;
 a = a - b;

 System.out.print(a + " ");
 }

 System.out.println(b);
}

Method Call Output

mystery(20, 2);

mystery(16, -2);

mystery(10, 25);

mystery(3, -1);

mystery(15, 3);

15 7 8

15 11 4 7

25

1 2

9 0 9

4. Assertions (15 points)
For each of the five points labeled by comments, identify each of the following assertions as being either always true,
never true or sometimes true / sometimes false.

 public static void mystery(Scanner input) {
 System.out.print("Enter a positive number: ");
 int num = input.nextInt();
 int z = num;
 int a = 0;

 // Point A
 while (z > 0) {
 // Point B
 if (a < z) {
 // Point C
 a++;
 } else {
 z--;
 }

 num = z + 1;
 // Point D
 }

 // Point E
 }

 z > 0 num > 0 a < z

Point A SOMETIMES SOMETIMES SOMETIMES

Point B ALWAYS ALWAYS SOMETIMES

Point C ALWAYS ALWAYS ALWAYS

Point D SOMETIMES ALWAYS SOMETIMES

Point E NEVER SOMETIMES NEVER

3 of 5

5. Programming (20 points)
Write a static method named isBalanced that accepts a String of parentheses and returns whether the parentheses in
the String are balanced or not. To be balanced:

• Every opening parenthesis must have a matching closing parenthesis after (“to the right of”) it.
• Every closing parenthesis must have a matching opening parenthesis before (“to the left of”) it.

 You may assume that the String parameter only has opening and closing parentheses.

Here are some example calls to the method:

Call Returns
isBalanced("")
isBalanced("()")
isBalanced("(")
isBalanced(")")
isBalanced("()(())")
isBalanced("(())(())()")
isBalanced(")()(")
isBalanced(")(")
isBalanced("())")
isBalanced("((())")
isBalanced("(())")

true
true
false
false
true
true
false
false
false
false
true

Hint: You will want to do some counting.

public static boolean isBalanced(String line) {
 int numOpen = 0;
 int numClosed = 0;
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '(') {
 numOpen++;
 } else {
 numClosed++;
 }

 if (numClosed > numOpen) {
 return false;
 }
 }

 return (numOpen == numClosed);
}

public static boolean isBalanced(String line) {
 int numOpen = 0;
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '(') {
 numOpen++;
 } else {
 numOpen--;
 }

 if (numOpen < 0) {
 return false;
 }
 }

 return (numOpen == 0);
}

4 of 5

6. Programming (20 points)
Write a static method named adder that takes a Scanner for the console as input and repeatedly asks the user for two
numbers to sum. The method stops asking for numbers when two consecutive sums are the same and prints out how
many sums were computed. You may assume that the user will always type exactly two integers per prompt.

 The following sample logs of execution show the output produced by the method:

Sample log #1 Sample log #2
Enter two numbers: 1 2
The sum is: 3
Enter two numbers: 3 4
The sum is: 7
Enter two numbers: 5 6
The sum is: 11
Enter two numbers: 1 2
The sum is: 3
Enter two numbers: 0 3
The sum is: 3
We computed 5 sums.

Enter two numbers: 0 0
The sum is: 0
Enter two numbers: -1 1
The sum is: 0
We computed 2 sums.

public static void adder(Scanner input) {
 System.out.print("Enter two numbers: ");
 int sum1 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum1);

 System.out.print("Enter two numbers: ");
 int sum2 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum2);

 int count = 2;
 while (sum1 != sum2) {
 sum1 = sum2;

 System.out.print("Enter two numbers: ");
 sum2 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum2);

 count++;
 }

 System.out.println("We computed " + count + " s ums.");
}

 (More possible solutions on the next page.)

5 of 5

public static void adder(Scanner input) {
 System.out.print("Enter two numbers: ");
 int sum1 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum1);

 int sum2 = sum1 + 1; // sum1 and sum2 have to b e different to enter the loop

 int count = 1;
 while (sum1 != sum2) {
 sum2 = sum1;

 System.out.print("Enter two numbers: ");
 sum1 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum1);

 count++;
 }

 System.out.println("We computed " + count + " s ums.");
}

public static void adder(Scanner input) {
 System.out.print("Enter two numbers: ");
 int sum1 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum1);

 int sum2;
 int count = 1;
 do {
 sum2 = sum1;

 System.out.print("Enter two numbers: ");
 sum1 = input.nextInt() + input.nextInt();
 System.out.println("The sum is: " + sum1);

 count++;
 } while (sum1 != sum2);

 System.out.println("We computed " + count + " s ums.");
}

