
Week 9

Writing Games with Pygame

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Inheritance

class name(superclass):
statements

– Example:
class Point3D(Point): # Point3D extends Point

z = 0 # add a z field
...

• Python also supports multiple inheritance

class name(superclass, ..., superclass):
statements

3

Calling Superclass Methods

• methods: class. method(parameters)

• constructors: class.__init__(parameters)

class Point3D(Point):
z = 0

def __init__(self, x, y, z):
Point.__init__(self, x, y)
self.z = z

def translate(self, dx, dy, dz):
Point.translate(self, dx, dy)
self.z += dz

4

Pygame

• A set of Python modules to help write games

• Deals with media (pictures, sound) nicely

• Interacts with user nicely (keyboard, joystick, mouse input)

5

Installing Pygame

• Go to the Pygame web site: http://www.pygame.org/

– click 'Downloads' at left

– Windows users: under the 'Windows' section,

• click the most recent version
(as of this quarter, that is pygame-1.8.1.win32-py2.6.msi)

– Mac users: under the 'Macintosh' section,

• click the most recent version
(as of this quarter, pygame-1.8.1release-py2.5-macosx10.5.zip)

– save file to hard disk

– run file to install it

6

Other Resources

• Pygame documentation: http://www.pygame.org/docs/

– lists every class in Pygame and its useful behavior

• The Application Programming Interface (API)

– specifies the classes and functions in package

• Search for tutorials

• Experiment!

7

Our Goal: Whack-a-Mole

• Clicking on the mole plays a sound and makes mole move

• Number of hits is displayed at top of screen

• Enhancements

– hit the mole with a shovel cursor

– make the mole move around every 1 second if he's not hit

8

Initializing a Game

• Import Pygame's relevant classes:

import sys
import pygame
from pygame import *
from pygame.locals import *
from pygame.sprite import *

• Initialize Pygame at the start of your code:

pygame.init()

9

Creating a Window

name = display.set_mode((width, height) [, options])

Example:
screen = display.set_mode((640, 480))

• Options:
FULLSCREEN - use whole screen instead of a window
DOUBLEBUF - display buffering for smoother animation
OPENGL - 3D acceleration (don't use unless needed)

Example:

screen = display.set_mode((1024, 768), FULLSCREEN)

10

Initial Game Program

• An initial, incomplete game file using Pygame:

whack_a_mole.py

1
2
3
4
5
6
7
8
9

10
11
12

import pygame
from pygame import *
from pygame.locals import *
from pygame.sprite import *

pygame.init()

set window title
display.set_caption("Whack-a-Mole")

screen = display.set_mode((640, 480))

11

Sprites

Next we must define all the sprites found in the game.

• sprite: A character, enemy, or other object in a game.

– Sprites can move, animate, collide, and be acted upon

– Sprites usually consist of an image to draw on the screen and
a bounding rectangle indicating the sprite's collision area

• Pygame sprites are objects that extend the Sprite class.

12

Programming a Sprite

class name(Sprite):
constructor
def __init__(self):

Sprite.__init__(self)
self.image = image.load(" filename")
self.rect = self.image.get_rect()

other methods (if any)

– Pre-defined fields in every sprite:

self.image - the image or shape to draw for this sprite

• images are Surface objects, loaded by image.load function

self.rect - position and size of where to draw the image

13

Sprite Example

A class for a mole sprite to be whacked.
class Mole (Sprite):

def __init__(self):
Sprite.__init__(self)
self.image = image.load("mole.gif")
self.rect = self.image.get_rect()

14

Sprite Groups

name = Group(sprite1, sprite2, ...)

– To draw sprites on screen, they must be put into a Group

Example:

my_mole = Mole() # create a Mole object
all_sprites = Group(my_mole)

Group methods:
– draw(surface) - draws all sprites in group onto a surface
– update() - updates every sprite's appearance

15

Surface

• In Pygame, every 2D object is an object of type Surface

– The screen object returned from display.set_mode() ,

each game character, images, etc.

– Useful methods in each Surface object:

draws this surface onto another surfaceblit(src, dest)

returns a Rect object representing the

x/y/w/h bounding this surface

get_rect()

returns the dimensions of the surfaceget_width() ,
get_height()

paints surface in given color (rgb 0-255)fill((red, green, blue))

DescriptionMethod Name

16

Drawing and Updating

• All Surface and Group objects have an update method that

redraws that object when it moves or changes.

• Once sprites are drawn onto the screen, you must call
display.update() to see the changes

my_mole = Mole() # create a Mole object
all_sprites = Group(my_mole)
all_sprites.draw(screen)
display.update() # redraw to see the sprites

17

Game Program v2
whack_a_mole.py

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

import pygame
from pygame import *
from pygame.locals import *
from pygame.sprite import *

class Mole (Sprite):
def __init__(self):

Sprite.__init__(self)
self.image = image.load(" mole.gif ")
self.rect = self.image.get_rect()

main
pygame.init()
display.set_caption("Whack-a-Mole")
screen = display.set_mode((640, 480))

my_mole = Mole() # initialize sprites
all_sprites = Group(my_mole)
screen.fill((255, 255, 255)) # white background
all_sprites.draw(screen)
display.update()

18

Event-Driven Programming

• event: A user interaction with the game, such as a mouse
click, key press, clock tick, etc.

• event-driven programming: Programs with an interface
that waits for user events and responds to those events.

• Pygame programs need to write an event loop that waits for
a Pygame event and then processes it.

19

Event Loop Template

after Pygame's screen has been created
while True:

name = event.wait() # wait for an event
if name.type == QUIT:

pygame.quit() # exit the game
break

elif name.type == type:
code to handle another type of events

...

code to update/redraw the game between events

20

Mouse Clicks

• When the user presses a mouse button, you get events with
a type of MOUSEBUTTONDOWNand MOUSEBUTTONUP.

– mouse movement is a MOUSEMOTIONevent

• mouse.get_pos() returns the mouse cursor's current
position as an (x, y) tuple

Example:
ev = event.wait()
if ev.type == MOUSEBUTTONDOWN:

user pressed a mouse button
x, y = mouse.get_pos()

21

Key Presses

• When the user presses a keyboard key, you get events with
a type of KEYDOWNand then KEYUP.

– event contains .key field representing what key was pressed

– Constants for different keys: K_LEFT, K_RIGHT, K_UP,
K_DOWN, K_a - K_z, K_0 - K_9, K_F1 - K_F12, K_SPACE,
K_ESCAPE, K_LSHIFT , K_RSHIFT, K_LALT, K_RALT,
K_LCTRL, K_RCTRL, ...

Example:
ev = event.wait()
if ev.type == KEYDOWN:

if ev.key == K_ESCAPE:
pygame.quit()

22

Collision Detection

• collision detection: Noticing whether one sprite or object
has touched another, and responding accordingly.

– A major part of game programming

• In Pygame, collision detection is done by examining sprites,
rectangles, and points, and asking whether they intersect.

23

Rect

• a 2D rectangle associated with each sprite (.rect field)

– Fields: top , left , bottom , right , center , centerx ,
centery , topleft , topright , bottomleft ,
bottomright , width , height , size , ...

joins two Rectsunion(rect)

moves a Rect to a new positionmove(x, y)

returns True if this Rect contains the othercontains(rect)

grow/shrink a Rect in sizeinflate(dx, dy)

returns True if this Rect contains the rectcolliderect(rect)

returns True if this Rect contains the pointcollidepoint(p)

DescriptionMethod Name

24

Collision Example

• Detecting whether a sprite touches the mouse cursor:

ev = event.wait()
if ev.type == MOUSEBUTTONDOWN:

if sprite.rect.collidepoint(mouse.get_pos()) :
then the mouse cursor touches the sprite
...

• Exercise: Detect when the user clicks on the Mole. Make
the mole run away by fleeing to a new random location
from (0, 0) to (600, 400).

25

Exercise Solution

class Mole(Sprite):
def __init__(self):

Sprite.__init__(self)
self.image = image.load("mole.gif")
self.rect = self.image.get_rect()

def flee(self):
self.rect.left = randint(0, 600) # random location
self.rect.top = randint(0, 400)

...

while True:
ev = event.wait() # wait for an event
if ev.type == QUIT:

pygame.quit()
break

elif ev.type == MOUSEBUTTONDOWN:
if my_mole.rect.collidepoint(mouse.get_pos()):

my_mole.flee()
...

