
Week 7

Lists

Special thanks to Scott Shawcroft, Ryan Tucker, and Paul Beck for their work on these slides.

Except where otherwise noted, this work is licensed under:
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Lists

• list: Python's equivalent to Java's array (but cooler)

– Declaring:

name = [value, value, ..., value] or,

name = [value] * length

– Accessing/modifying elements: (same as Java)

name[index] = value

>>> scores = [9, 14, 18, 19, 16]
[9, 14, 18, 19, 16]
>>> counts = [0] * 4
[0, 0, 0, 0]
>>> scores[0] + scores[4]
25

3

Indexing

• Lists can be indexed using positive or negative numbers:

152418161912149value

index 0 1 2 3 4 5 6 7

index -8 -7 -6 -5 -4 -3 -2 -1

>>> scores = [9, 14, 12, 19, 16, 18, 24, 15]
>>> scores[3]
19
>>> scores[-3]
18

4

Slicing

• slice: A sub-list created by specifying start/end indexes
name[start: end] # end is exclusive
name[start:] # to end of list

name[: end] # from start of list

name[start: end: step] # every step'th value

>>> scores = [9, 14, 12, 19, 16, 18, 24, 15]
>>> scores[2:5]
[12, 19, 16]
>>> scores[3:]
[19, 16, 18, 24, 15]
>>> scores[:3]
[9, 14, 12]
>>> scores[-3:]
[18, 24, 15]

152418161912149value

index 0 1 2 3 4 5 6 7

index -8 -7 -6 -5 -4 -3 -2 -1

5

Other List Abilities

– Lists can be printed (or converted to string with str()).

– Find out a list's length by passing it to the len function.

– Loop over the elements of a list using a for ... in loop.

>>> scores = [9, 14, 18, 19]
>>> print "My scores are", scores
My scores are [9, 14, 18, 19]
>>> len(scores)
4
>>> total = 0
>>> for score in scores:
... print "next score:", score
... total += score
next score: 9
next score: 14
next score: 18
next score: 19
>>> total
60

6

Exercise

• Recall the midterm scores.txt data:

76
89
76
72
68

• Recreate the Midterm histogram from lecture in Python:

75: *
76: *****
79: **
81: ********
82: ******
84: ***********

7

Ranges, Strings, and Lists

• The range function returns a list.

• Strings behave like lists of characters:
– len

– indexing and slicing

– for ... in loops

>>> nums = range(5)
>>> nums
[0, 1, 2, 3, 4]
>>> nums[-2:]
[3, 4]
>>> len(nums)
5

8

String Splitting

• split breaks a string into a list of tokens.

name.split() # break by whitespace

name.split(delimiter) # break by delimiter

• join performs the opposite of a split
delimiter.join(list)

>>> name = "Brave Sir Robin"
>>> name[-5:]
'Robin'
>>> tokens = name.split()
['Brave', 'Sir', 'Robin']
>>> name.split("r")
['B', 'ave Si', ' Robin']
>>> "||".join(tokens)
'Brave||Sir||Robin'

9

Tokenizing File Input

• Use split to tokenize line contents when reading files.

– You may want to type-cast tokens: type(value)

>>> f = open("example.txt")
>>> line = f.readline()
>>> line
'hello world 42 3.14\n'

>>> tokens = line.split()
>>> tokens
['hello', 'world', '42', '3.14']

>>> word = tokens[0]
'hello'
>>> answer = int(tokens[2])
42
>>> pi = float(tokens[3])
3.14

10

Exercise

• Recall the hours.txt data:

123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jenn 8.0 8.0 8.0 8.0 7.5

• Recreate the Hours program from lecture in Python:

Susan worked 31.4 hours, 7.85 / day, 2 days above a verage
Brad worked 36.8 hours, 7.36 / day, 2 days above av erage
Jenn worked 39.5 hours, 7.9 / day, 4 days above aver age

11

Exercise Answer

file = open("hours.txt")
for line in file:

tokens = line.split()
id = tokens[0]
name = tokens[1]

hours = 0.0 # cumulative sum of employee's hours
days = 0
for token in tokens[2:]:

hours += float(token)
days += 1

average = hours / days
above = 0 # compute number of days above average
for token in tokens[2:]:

if float(token) > average:
above += 1

print name, "worked", hours, "hours (", average, \
"/ day," above, "days above average"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

hours.py

