
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 9

Lecture 9-2: Static Data; More Inheritance

reading: 9.3 - 9.4

Copyright 2008 by Pearson Education
2

DrunkenFratGuy critter

� All the frat guys are trying to get to the same party

� The party is at a randomly-generated board location

(On the 60-by-50 world)

� They stumble north then east until they reach the party

Copyright 2008 by Pearson Education
3

A flawed solution
import java.util.*;

public class DrunkenFratGuy extends Critter {
private int partyX;
private int partyY;

public DrunkenFratGuy() {
Random r = new Random();
partyX = r.nextInt(60);
partyY = r.nextInt(50);

}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

� Problem: Each guy goes to his own party, not a shared one.

Copyright 2008 by Pearson Education
4

Static fields

� static: Part of a class, rather than part of an object.

� Classes can have static fields.

� Static fields are not replicated into each object;
a single field is shared by all objects of that class.

private static type name;

or,

private static type name = value;

� Example:

private static int count = 0;

Copyright 2008 by Pearson Education
5

Static field example
public class Husky implements Critter {

// count of Huskies created so far
private static int objectCount = 0;

private int number; // each Husky has a number

public Husky() {
objectCount++;
number = objectCount;

}

...

public String toString() {
return "I am Husky #" + number +

"out of " + objectCount ;
}

}

Copyright 2008 by Pearson Education
6

Static methods

� static method: Part of a class, not part of an object.

� shared by all objects of that class

� good for code related to a class but not to each object's state

� does not understand the implicit parameter, this ;

therefore, cannot access an object's fields directly

� if public , can be called from inside or outside the class

� Declaration syntax: (same as we have seen before)

public static type name(parameters) {

statements;

}

Copyright 2008 by Pearson Education
7

Static method example 1
� Java's built-in Math class has code that looks like this:

public class Math {
...

public static int abs(int a) {
if (a >= 0) {

return a;
} else {

return -a;
}

}

public static int max(int a, int b) {
if (a >= b) {

return a;
} else {

return b;
}

}
}

Copyright 2008 by Pearson Education
8

Static method example 2
public class Point {

...

// Converts a String such as "(5, -2)" to a Point.
// Pre: s must be in valid format.

public static Point parse(String s) {
s = s.substring(1, s.length() - 1); // "5, -2"
s = s.replaceAll(",", ""); // "5 -2"

// break apart the tokens, convert to ints
Scanner scan = new Scanner(s);
int x = scan.nextInt(); // 5
int y = scan.nextInt(); // 2

Point p = new Point(x, y);
return p;

}
}

Copyright 2008 by Pearson Education
9

Calling static methods
class. method(parameters);

� This is the syntax client code uses to call a static method.

� Examples:

int absVal = Math.max(5, 7) ;
Point p3 = Point.parse("(-17, 52)") ;

� From inside the same class, the class. is not required.

method(parameters);

� This is the syntax you used to call methods in your programs.

Copyright 2008 by Pearson Education
10

Fixed DrunkenFratGuy
import java.util.*;

public class DrunkenFratGuy extends Critter {
private static int partyX = -1;
private static int partyY = -1;

public DrunkenFratGuy() {
if (partyX < 0 || partyY < 0) {

Random r = new Random(); // the 1st frat guy created
partyX = r.nextInt(60); // chooses the party location
partyY = r.nextInt(50); // for all frat guys to go to

}
}

public Direction getMove() {
if (getY() != partyY) {

return Direction.NORTH;
} else if (getX() != partyX) {

return Direction.EAST;
} else {

return Direction.CENTER;
}

}
}

Copyright 2008 by Pearson Education
11

Inheritance with
constructors and fields

reading: 9.3

Copyright 2008 by Pearson Education
12

Calling overridden methods
super. method(parameters)

� Example:

public class LegalSecretary extends Secretary {
public double getSalary() {

double baseSalary = super.getSalary() ;
return baseSalary + 5000.0;

}
...

}

� Recall: Subclasses can call overridden methods with super .

Copyright 2008 by Pearson Education
13

Inheritance and constructors
� Imagine that we want to give employees more vacation

days the longer they've been with the company.

� For each year worked, we'll award 2 additional vacation days.

� When an Employee object is constructed, we'll pass in the
number of years the person has been with the company.

� This will require us to modify our Employee class and add

some new state and behavior.

� Exercise: Make necessary modifications to the Employee class.

Copyright 2008 by Pearson Education
14

Modified Employee class
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getHours() {
return 40;

}

public double getSalary() {
return 50000.0;

}

public int getVacationDays() {
return 10 + 2 * years;

}

public String getVacationForm() {
return "yellow";

}
}

Copyright 2008 by Pearson Education
15

Problem with constructors
� Now that we've added the constructor to the Employee

class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol
symbol : constructor Employee()
location: class Employee
public class Lawyer extends Employee {

^

� The short explanation: Once we write a constructor (that
requires parameters) in the superclass, we must now write
constructors for our employee subclasses as well.

� The long explanation: (next slide)

Copyright 2008 by Pearson Education
16

The detailed explanation
� Constructors are not inherited.

� Subclasses don't inherit the Employee(int) constructor.

� They receive a default constructor that contains:

public Lawyer() {

super(); // calls Employee() constructor

}

� But our Employee(int) replaces the default Employee() .

� The subclasses' default constructors are now trying to call a
non-existent default Employee constructor.

Copyright 2008 by Pearson Education
17

Calling superclass constructor

super(parameters);

� Example:
public class Lawyer extends Employee {

public Lawyer(int years) {
super(years); // calls Employee constructor

}
...

}

� The super call must be the first statement in the constructor.

� Exercise: Make a similar modification to the Marketer class.

Copyright 2008 by Pearson Education
18

Modified Marketer class
// A class to represent marketers.
public class Marketer extends Employee {

public Marketer(int years) {
super(years);

}

public void advertise() {
System.out.println("Act now while supplies last!");

}

public double getSalary() {
return super.getSalary() + 10000.0;

}
}

� Exercise: Modify the Secretary subclass.

� Secretaries' years of employment are not tracked.

� They do not earn extra vacation for years worked.

Copyright 2008 by Pearson Education
19

Modified Secretary class
// A class to represent secretaries.
public class Secretary extends Employee {

public Secretary() {
super(0);

}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

� Since Secretary doesn't require any parameters to its

constructor, LegalSecretary compiles without a constructor.

� Its default constructor calls the Secretary() constructor.

Copyright 2008 by Pearson Education
20

Inheritance and fields
� Try to give lawyers $5000 for each year at the company:

public class Lawyer extends Employee {
...
public double getSalary() {

return super.getSalary() + 5000 * years;
}
...

}

� Does not work; the error is the following:
Lawyer.java:7: years has private access in Employee

return super.getSalary() + 5000 * years;
^

� Private fields cannot be directly accessed from subclasses.

� One reason: So that subclassing can't break encapsulation.

� How can we get around this limitation?

Copyright 2008 by Pearson Education
21

Improved Employee code
Add an accessor for any field needed by the subclass.
public class Employee {

private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getYears() {
return years;

}
...

}

public class Lawyer extends Employee {
public Lawyer(int years) {

super(years);
}

public double getSalary() {
return super.getSalary() + 5000 * getYears() ;

}
...

}

Copyright 2008 by Pearson Education
22

Revisiting Secretary
� The Secretary class currently has a poor solution.

� We set all Secretaries to 0 years because they do not get a
vacation bonus for their service.

� If we call getYears on a Secretary object, we'll always get 0.

� This isn't a good solution; what if we wanted to give some
other reward to all employees based on years of service?

� Redesign our Employee class to allow for a better solution.

Copyright 2008 by Pearson Education
23

Improved Employee code

• Let's separate the standard 10 vacation days from those
that are awarded based on seniority.

public class Employee {
private int years;

public Employee(int initialYears) {
years = initialYears;

}

public int getVacationDays() {
return 10 + getSeniorityBonus() ;

}

// vacation days given for each year in the company
public int getSeniorityBonus() {

return 2 * years;
}
...

}

� How does this help us improve the Secretary ?

Copyright 2008 by Pearson Education
24

Improved Secretary code

• Secretary can selectively override getSeniorityBonus ;
when getVacationDays runs, it will use the new version.

� Choosing a method at runtime is called dynamic binding.

public class Secretary extends Employee {
public Secretary(int years) {

super(years);
}

// Secretaries don't get a bonus for their years of service.
public int getSeniorityBonus() {

return 0;
}

public void takeDictation(String text) {
System.out.println("Taking dictation of text: " + te xt);

}
}

Copyright 2008 by Pearson Education
25

Recall: Rabbit critter

Method Behavior

constructor public Rabbit()

color dark gray (Color.DARK_GRAY)

eating alternates (true , false , true , ...)

fighting if opponent is a Lion, then scratch; otherwise, roar

movement 2 N, 2 S, 2 E, repeat

toString "V"

Copyright 2008 by Pearson Education
26

Exercise: WhiteRabbit
� In section 9, you wrote a Rabbit critter

� Hops: N N, S S, E E, N N, S S, E E, ...

� Let's write WhiteRabbit

� White, not brown

� Hops in cycles of 8

(N*8, S*8, E, E,
N*8, S*8, E, E, ...)

