
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 8

Lecture 8-1: Classes and Objects

reading: 8.1 - 8.3

self-checks: #1-9

exercises: #1-4

Copyright 2008 by Pearson Education
2

A programming problem
� Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
6
50 20
90 60
10 72
74 98
5 136
150 91

� Write a program to draw the cities on a DrawingPanel, then drop
a "bomb" that turns all cities red that are within a given radius:

Blast site x/y? 100 100
Blast radius? 75

Copyright 2008 by Pearson Education
3

A bad solution

Scanner input = new Scanner(new File("cities.txt"));
int cityCount = input.nextInt();
int[] xCoords = new int[cityCount];
int[] yCoords = new int[cityCount];

for (int i = 0; i < cityCount; i++) {
xCoords[i] = input.nextInt(); // read each city
yCoords[i] = input.nextInt();

}
...

� parallel arrays: 2+ arrays with related data at same indexes.

� Considered poor style.

Copyright 2008 by Pearson Education
4

Observations
� This problem would be easier to solve if

there were such a thing as a Point object.

� A Point would store a city's x/y data.

� We could compare distances between Points
to see whether the bomb hit a given city.

� Each Point would know how to draw itself.

� The overall program would be shorter and cleaner.

Copyright 2008 by Pearson Education
5

Clients of objects
� client program: A program that uses objects.

� Example: Circles is a client of DrawingPanel and Graphics.

Circles.java (client program)

public class Circles {
main(String[] args) {

new DrawingPanel(...)
new DrawingPanel(...)
...

}
}

DrawingPanel.java (class)

public class DrawingPanel {
...

}

Copyright 2008 by Pearson Education
6

Classes and objects
� class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

� The DrawingPanel class is a template for creating
DrawingPanel objects.

� object: An entity that combines state and behavior.

� object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2008 by Pearson Education
7

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Copyright 2008 by Pearson Education
8

Abstraction
� abstraction: A distancing between ideas and details.

� We can use objects without knowing how they work.

� abstraction in an iPod:

� You understand its external behavior (buttons, screen).

� You don't understand its inner details, and you don't need to.

Copyright 2008 by Pearson Education
9

Our task
� In the following slides, we will implement a Point class as

a way of learning about classes.

� We will define a type of objects named Point.

� Each Point object will contain x/y data called fields.

� Each Point object will contain behavior called methods.

� Client programs will use the Point objects.

Copyright 2008 by Pearson Education
10

Point objects (desired)
Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

� Data in each Point object:

� Methods in each Point object:

how far away the point is from point pdistance(p)

displays the point on a drawing paneldraw(g)

adjusts the point's x and y by the given amountstranslate(dx, dy)

sets the point's x and y to the given valuessetLocation(x, y)

DescriptionMethod name

the point's y-coordinatey

the point's x-coordinatex

DescriptionField name

Copyright 2008 by Pearson Education
11

Point class as blueprint

� The class (blueprint) describes how to create objects.
� Each object contains its own data and methods.

Point class

state:
int x, y

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

12
Copyright 2008 by Pearson Education

Object state:
Fields

reading: 8.2

self-check: #5-6

Copyright 2008 by Pearson Education
13

Point class, version 1
public class Point {

int x;
int y;

}

� Save this code into a file named Point.java.

� The above code creates a new type named Point.

� Each Point object contains two pieces of data:

� an int named x, and

� an int named y.

� Point objects do not contain any behavior (yet).

Copyright 2008 by Pearson Education
14

Fields
� field: A variable inside an object that is part of its state.

� Each object has its own copy of each field.

� Declaration syntax:

type name;

� Example:

public class Student {
String name; // each Student object has a
double gpa; // name and gpa field

}

Copyright 2008 by Pearson Education
15

Accessing fields
� Other classes can access/modify an object's fields.

� access: variable.field

� modify: variable.field = value;

� Example:

Point p1 = new Point();
Point p2 = new Point();
System.out.println("the x-coord is " + p1.x); // access
p2.y = 13; // modify

Copyright 2008 by Pearson Education
16

A class and its client
� Point.java is not, by itself, a runnable program.

� A class can be used by client programs.

PointMain.java (client program)

public class PointMain {
... main(args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}
}

Point.java (class of objects)

public class Point {
int x;
int y;

}

2y7x

3y4x

Copyright 2008 by Pearson Education
17

PointMain client example
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point();
p1.y = 2;
Point p2 = new Point();
p2.x = 4;

System.out.println(p1.x + "," + p1.y); // 0,2

// move p2 and then print it
p2.x += 2;
p2.y++;
System.out.println(p2.x + "," + p2.y); // 6,1

}
}

� Exercise: Modify the Bomb program to use Point objects.

Copyright 2008 by Pearson Education
18

Arrays of objects
� null : A reference that does not refer to any object.

� The elements of an array of objects are initialized to null.

String[] words = new String[5];
DrawingPanel[] windows = new DrawingPanel[3];

nullnullnullnullnullvalue

43210index

nullnullnullvalue

210index

words

windows

Copyright 2008 by Pearson Education
19

Things you can do w/ null
� store null in a variable or an array element

String s = null;
words[2] = null;

� print a null reference

System.out.println(s); // output: null

� ask whether a variable or array element is null

if (words[i] == null) { ...

� pass null as a parameter to a method

� return null from a method (often to indicate failure)

Copyright 2008 by Pearson Education
20

Null pointer exception
� dereference: To access data or methods of an object with

the dot notation, such as s.length().

� It is illegal to dereference null (causes an exception).

� null is not any object, so it has no methods or data.

String[] words = new String[5];
System.out.println("word is: " + words[0]);
words[0] = words[0].toUpperCase();

Output:
word is: null
Exception in thread "main"
java.lang.NullPointerException

at Example.main(Example.java:8)

Copyright 2008 by Pearson Education
21

Looking before you leap
� You can check for null before calling an object's methods.

String[] words = new String[5];
words[0] = "hello";
words[2] = "goodbye"; // words[1], [3], [4] are null

for (int i = 0; i < words.length; i++) {
if (words[i] != null) {

words[i] = words[i].toUpperCase();
}

}

nullnull"goodbye"null"hello"value

43210index

words

Copyright 2008 by Pearson Education
22

Two-phase initialization
1) initialize the array itself (each element is initially null)

2) initialize each element of the array to be a new object

String[] words = new String[4]; // phase 1
for (int i = 0; i < words.length; i++) {

coords[i] = "word " + i; // phase 2
}

"word 3""word 2""word 1""word 0"value

3210index

words

