
Copyright 2008 by Pearson Education

Building Java Programs

Chapter 6

Lecture 6-1: File Input with Scanner

reading: 6.1 - 6.2, 5.3

self-check: Ch. 6 #1-6

exercises: Ch. 6 #5-7

videos: Ch. 6 #1-2

Copyright 2008 by Pearson Education
2

Input/output (I/O)
import java.io.*;

� Create a File object to get info about a file on disk.

(This doesn't actually create a new file on the hard disk.)

File f = new File ("example.txt");
if (f.exists() && f.length() > 1000) {

f.delete() ;
}

whether this file exists on diskexists()

returns file's namegetName()

changes name of filerenameTo(file)

removes file from diskdelete()

returns number of bytes in filelength()

returns whether file is able to be readcanRead()

DescriptionMethod name

Copyright 2008 by Pearson Education
3

Reading files
� To read a file, pass a File when constructing a Scanner.

Scanner name = new Scanner(new File("file name"));

Example:

File file = new File("mydata.txt");

Scanner input = new Scanner(file);

or, better yet:

Scanner input = new Scanner(new File("mydata.txt"));

Copyright 2008 by Pearson Education
4

The throws clause

� throws clause: Keywords on a method's header that state

that it may generate an exception.

� Syntax:

public static type name(params) throws type {

� Example:

public class ReadFile {

public static void main(String[] args)

throws FileNotFoundException {

� Like saying, "I hereby announce that this method might throw

an exception, and I accept the consequences if it happens."

Copyright 2008 by Pearson Education
5

Scanner exceptions
� InputMismatchException

� You read the wrong type of token (e.g. read "hi" as int).

� NoSuchElementException
� You read past the end of the input.

� Finding and fixing these exceptions:

� Read the exception text for line numbers in your code (the
first line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementException

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

Copyright 2008 by Pearson Education
6

Testing for valid input
� Scanner methods to see what the next token will be:

� These methods do not consume input;

they just give information about the next token.

� Useful to see what input is coming, and to avoid crashes.

returns true if there is a next token
and it can be read as a double

hasNextDouble()

returns true if there is a next token
and it can be read as an int

hasNextInt()

returns true if there are any more tokens of

input to read (always true for console input)

hasNext()

DescriptionMethod

Copyright 2008 by Pearson Education

Line-based
file processing

reading: 6.3

self-check: #7-11

exercises: #1-4, 8-11

Copyright 2008 by Pearson Education
8

Hours question
� Given a file hours.txt with the following contents:

123 Kim 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Stef 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing hours worked by each person:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Stef (ID#789) worked 39.5 hours (7.9 hours/day)

� Let's try to solve this problem token-by-token ...

Copyright 2008 by Pearson Education
9

Hours answer (flawed)
// This solution does not work!
import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new

File("hours.txt"));
while (input.hasNext()) {

// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while (input.hasNextDouble()) {

totalHours += input.nextDouble() ;
days++;

}
System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours
(" +

Copyright 2008 by Pearson Education
10

Flawed output
Susan (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at HoursWorked.main(HoursBad.java:9)

� The inner while loop is grabbing the next person's ID.

� We want to process the tokens, but we also care about the line
breaks (they mark the end of a person's data).

� A better solution is a hybrid approach:

� First, break the overall input into lines.

� Then break each line into tokens.

Copyright 2008 by Pearson Education
11

Line-based Scanner methods

� nextLine consumes from the input cursor to the next \n .

Scanner input = new Scanner(new File("file name"));
while (input.hasNextLine()) {

String line = input.nextLine() ;

process this line;

}

returns true if there are any more lines of input

to read (always true for console input)

hasNextLine()

returns the next entire line of inputnextLine()

DescriptionMethod

Copyright 2008 by Pearson Education
12

Consuming lines of input
23 3.14 John Smith "Hello world"

45.2 19

� The Scanner reads the lines as follows:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

� String line = input.nextLine();
23\t3.14 John Smith\t"Hello world" \n\t\t45.2 19\n

^

� String line2 = input.nextLine();
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19 \n

^

� Each \n character is consumed but not returned.

Copyright 2008 by Pearson Education
13

Scanners on Strings

� A Scanner can tokenize the contents of a String:

Scanner name = new Scanner(String);

� Example:

String text = "15 3.2 hello 9 27.5";

Scanner scan = new Scanner(text) ;

int num = scan.nextInt();

System.out.println(num); // 15

double num2 = scan.nextDouble();

System.out.println(num2); // 3.2

String word = scan.next();

System.out.println(word); // hello

Copyright 2008 by Pearson Education
14

Tokenizing lines of a file

// Counts the words on each line of a file
Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);

// process the contents of this line
int count = 0;
while (lineScan.hasNext()) {

String word = lineScan.next();
count++;

}
System.out.println("Line has " + count + " words");

}

Line has 6 words

Line has 3 words

The quick brown fox jumps over

the lazy dog.

Output to console:Input file input.txt:

Copyright 2008 by Pearson Education
15

Hours question
� Fix the Hours program to read the input file properly:

123 Kim 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Stef 8.0 8.0 8.0 8.0 7.5

� Recall, it should produce the following output:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Stef (ID#789) worked 39.5 hours (7.9 hours/day)

Copyright 2008 by Pearson Education
16

Hours answer, corrected
// Processes an employee input file and outputs eac h employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Hours {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad"
double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum = sum + lineScan.nextDouble();
count++;

}

double average = sum / count;
System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");
}

}
}

Copyright 2008 by Pearson Education
17

Hours v2 question
� Modify the Hours program to search for a person by ID:

� Example:

Enter an ID: 456

Brad worked 36.8 hours (7.36 hours/day)

� Example:

Enter an ID: 293

ID #293 not found

Copyright 2008 by Pearson Education
18

Hours v2 answer 1
// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args) throws FileNotFoundException {

Scanner console = new Scanner(System.in);
System.out.print("Enter an ID: ");
int searchId = console.nextInt(); // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));
String line = findPerson(input, searchId);
if (line.length() > 0) {

processLine(line);
} else {

System.out.println("ID #" + searchId + " was not found");
}

}

...

Copyright 2008 by Pearson Education
19

Hours v2 answer 2
// Locates and returns the line of data about a par ticular person.
public static String findPerson(Scanner input, int searchId) {

while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
if (id == searchId) {

return line; // we found them!
}

}
return ""; // not found, so return an empty line

}

// Totals the hours worked by the person and output s their info.
public static void processLine(String line) {

Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad"
double hours = 0.0;
int days = 0;
while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();
days++;

}

System.out.println(name + " worked " + hours + " hours ("
+ (hours / days) + " hours/day)");

}
}

