CSE 142, Autumn 2008
Programming Assignment #5: Guessing Game (20 points)

Part A (single game) due Tuesday, October 28, 2008, 11:30 PM *
Part B (complete program) due Tuesday, November 4, 2008, 11:30 PM

This assignment focuses ahile loops and random numbers. Turn in a file na@eessingGame.java

Your program allows the user to play a game in Wihie program thinks of a random integer and ascgp¢sses from
the user until the user guesses the number corresftter each incorrect guess, you will tell theeu whether the correct
answer is higher or lower. Your program must dyaetproduce the format and behavior of the logthis document.

This assignment will be due in two parts: an ihitlRart A" that plays only a single game, and tkeonid complete
(multi-game) "Part B" a few days later. Part Alwibt be worth as many points as Part BN®TE: Part A isnot ac-
cepted late, nor can you earn any "early days" for submititregarly.

Program Behavior (Part A):

In Part A, a single guessing game is played. S¢¥eatures that will be present in Part B, such asompt to play more
games and a final display of overall statistics, ot included in Part A.

In the guessing game, the computer chooses a randorber between 1 and 100 inclusive. The game thskaser for
guesses until the correct number is guessed. A&fieh incorrect guess, the program gives a clubdauser about
whether the correct number is higher or lower ttlanuser's guess. Once the user types the cowetdber, the game
ends and the program reports how many guessesweded.

I'm thinking of a number between 1 and 100...
(The answer is 46)

Your guess? 50

It's lower. -

Your guess? 25

It's higher.

Your guess? 37

It's higher.

Your guess? 43

It's higher. —

Your guess? 47

It's lower.

Your guess? 46

You got it right in 6 guesses!

Your program shouldn't always use 46 as the coamesiver; you should choose a different random anbeteveen 1 and
100 (inclusive) each time the program is run. Youtput will have different random numbers depegdin the random
number chosen and depending what the user typegobuoutput's overall structure should matchahgut shown.

In Part A, the program should print a message shatvs the game's correct answ@hé¢ answer is 48) below).
Obviously this ruins the challenge of the game,thatpoint of Part A is for your own testing to ¢je¢ game logic work-
ing. By being able to see the correct answer,cavumore easily debug the program by trying varguesses and seeing
whether your game prints the correct clue. A mgsdike this is sometimes called a "debug message'debug
printin ", You will remove this debug message in Part B.

You should handle the case where the user gudssesitrect number on the first try. Print thedaling message:

I'm thinking of a number between 1 and 100...
(The answer is 71)

Your guess? 71

You got it right in T guess!

Assume valid user input. When prompted for numibesuser will type integers only, and integerstuitable ranges.

Part A will be graded on external correctness @mroutput) only, not on internal correctness or aspects of your cod-
ing style. You do not need to comment Part A, orrwvabout redundancy, proper static methods, etc.

1of3

Program Behavior (Part B):

Part B is a more sophisticated version of the gngsgame program that is able to play multiple ganas well as print-
ing overall statistics about all games played. ikégnWith Part A, it is possible to submit Part Beland also to earn early
days for submitting Part B early. The differenbesveen Part A and Part B are summarized below.

<< your haiku intro nmessage here >>

I'm thinking of a number between 1 and 100...
Your guess? 50

It's lower.

Your guess? 25

It's higher. —

Your guess? 35

It's lower.

Your guess? 30

It's higher.

Your guess? 32

It's lower. —

Your guess? 31

You got it right in 6 guesses!

Do you want to play again? y

I'm thinking of a number between 1 and 100...
Your guess? 50

It's higher.

Your guess? 75

It's lower. -

Your guess? 65

It's lower.

Your guess? 61

It's higher.

Your guess? 64

You got it right in 5 guesses!

Do you want to play again? YES

I'm thinking of a number between 1 and 100...
Your guess? 60

It's lower.

Your guess? 20
It's higher.

Your guess? 30
It's higher. —
Your guess? 40
It's higher.

Your guess? 45
It's higher.

Your guess? 50
It's lower. -
Your guess? 47
It's higher.

Your guess? 48
It's higher.

Your guess? 49
You got it right in 9 guesses!
Do you want to play again? no

Overall results:

total games =3

total guesses = 20
guesses/game = 6.67
bestgame =5

First, the program prints a header message desgribi
itself. This can be any message of your choodindy,
we suggest that you write a haiku poem relatechéo t
guessing game. Your poem can be posted to Facebook

Next, a series of games is played. Each game bshav
identically to the game you wrote in Part A, exctatt

the correct answer is not told to the user at the of

the game; the debug message from Part A is removed.
You can leave the debug message in your code while
working on Part B, but remove it before turningnt
(Consider commenting out the debug message so that
you can turn it back on/off if you need it for dejging.)

After each game ends and the number of guesses is
shown, the program asks the user if he/she woksdtdi

play again. Assume that the user will type a ooedw
String as the response to this question.

A new game should begin if the user's responsésstar
with a lower- or upper-case Y. For example, answer
such as "y", "Y", "yes", "YES", "Yes", or "yeehawll
indicate that the user wants to play again.

Any other response means that the user does nattavan
play again. For example, responses of "no", "No",
"okay", "0", "certainly”, and "hello" are all assenhto
mean no.

Once the user chooses not to play again, the progra
prints overall statistics about all games. Thaltotim-

ber of games, total guesses made in all gamesagwer
number of guesses per game (as a real number munde
to the nearest hundredth), and best game (fewest
guesses needed to solve any one game) are displayed

Your statistics should present correct informatfon

any number of games 1, and any number of guesses

1 in each game. You may assume that no game will
require one million or more guesses, but beyond tha
your code should work no matter how many games the
user plays or how many guesses are needed to solve
each game, even if this number is very large.

Part B will be graded on both external and inteotat
rectness, according to guidelines specified onnigpet
page. Your Part B code is required to have aqdaii
class constant described on the next page.

NOTE: If you finish all of Part B before Part Adlsie, you may submit a working version of Part B/agr Part A solu-
tion. But you must still submit a file into eachtbe Part A and Part B areas on the web site (éveris the same file in
both cases). The same due dates still apply fitr Barts regardless of whether you choose thigwopti

20of 3

Implementation Guidelines:

<< your haiku intro message here >> In Part B, you must define @dass constant for the maxi-
mum number used in the guessing game. The saogple |

'm thinking of a number between 1 and 5... on the previous page shows the user making guésses

Your guess? 2

It's higher. = 1 to 100, but you should be able to change jusvéhge of
Your guess? 4 the constant to cause the program play the ganteothier
It's lower. B ranges, such as a range of 1 to 50, a range oR5Gpor
Your guess? 3 any range from 1 to any maximum.

You got it right in 3 guesses!

Do you want to play again? yes Use your constant throughout your code and doefet to

the number 100 directly. Test your program by cjiram

'm thinking of a number between 1 and 5... your constant and running the program again to nsake

Your guess? 3

It's higher. = that everything works right with the new value.r Egam-
Your guess? 5 ple, a guessing game for numbers between 1 andufdwo
You got it right in 2 guesses! produce output such as that shown at left. The sith
Do you want to play again? Nah shows other expected output cases.
Overall results: As with the Space Needle assignment, we strongjgest
total games =2 that you add the constant to your code last. Yay aiso
total guesses =5

. want to re-enable your debug message so that yose=
guesses/game = 2.50 :
bestgame =2 the correct answer when testing your constant add.c

Read the answer using tBeanner 's next method (nohextLine , which can cause strange errors when mixed with
nextint). To check for a yes/no user response,at8eg methods described in Chapters 3-4 of the bookiouf get

an InputMismatchException error, it means you are trying to read the wrommptof value from &canner . For ex-
ample, you may be trying to read an integer wheruger has instead typed a string.

Produce randomness using a sirkRg@dom object, as described in Chapter 5. Remembietidort java.util.*;

Produce repetition usinghile or do/while loops. You may also want to review fencepost sospm Chapter 4 and
sentinel loops from Chapter 5. Chapter 5's cas#yss a particularly relevant example for thisiggsent. Some stu-
dents try to achieve repetition without properlyngswhile loops, by writing a method that calls itself; tlisnot appro-
priate on this assignment and will result in a ddida in points.

Stylistic Guidelines (Part B):
For this assignment you are limited to the languegtures in Chapters 1-5 shown in lecture oréixebbok.

Structure your solution using static methods tltaept parameters and return values where apprepriar full credit,
you must have at leasdte following two methods other than mai n in your program:

1. a method telay one game with the user (not multiple games)
This method shouldot contain the code that prompts the user Yes/Ndetp gnother game.

2. amethod toeport the overall statistics to the user (and nothing more)
This method shouldnly print the statistics, not do anything else suchtae loops or playing games.

You may define more methods than this if you fintelpful, although you will find that the limitath that methods can
return only one value will tend to limit how muchwcan decompose this problem.

You may define other methods if they are usefulstoucture or to eliminate redundancy. Unlike ame past programs,
it is okay to have someintin statements imain, as long as your program has good structurenama is still a con-
cise summary of the program. For example, youptace the loop that performs multiple games andotieenpt to play
again inmain . As a reference, our solution has 4 methods dttz@main and occupies between 90-110 lines total.

Use whitespace and indentation properly. Limiedino 100 characters. Give meaningful names thiadstand vari-
ables, and follow Java's naming standards. Lazaliwiables whenever possible. Include a comntethieabeginning of
your program with basic description information eamd¢omment at the start of each method. Sinceptitigram has
longer methods than past programs, also put boreieents inside the methods explaining relevaniaecbf your code.

30of3

