
1 of 4

CSE 142, Spring 2007
Programming Assignment #8: Critter Safari (20 points)

Due: Tuesday, May 29, 2007, 4:00 PM

adapted from "Critters" assignment by Stuart Reges, with ideas from Steve Gribble

This assignment will give you practice with creating classes.
Turn in files named Mouse.java , Tiger.java , Elephant.java , and Husky.java .

Program Behavior:

You will write a set of classes that define the behavior of various animals. You will be provided with several classes that
implement a graphical simulation of a 2D world with many animals moving around in it. Different kinds of animals move
in different ways; as you write each class, you are defining those differences.

On each round of the simulation, each critter is asked
which direction it wants to move. On each round, each
critter can move one square north, south, east, west, or stay
at its current location. Critters move around in a world of
finite size, but the word is toroidal (going off the end to the
right brings you back to the left and vice versa; going off
the end to the top brings you back to the bottom and vice
versa). The critter world is divided into cells that have
integer coordinates. There are 60 cells across and 50 cells
up and down. The upper-left cell has coordinates (0, 0),
increasing x values move you right and increasing y values
move you down (similar to the DrawingPanel).

This program will probably be confusing at first because
this is the first time where you are not writing the main
method (the client code that uses your animal objects),
therefore your code will not be in control of the overall
program's execution. Instead, you are defining a series of

objects that become part of a larger system. For example, you might find that you want to have one of your critters make
several moves all at once—you won't be able to do that. The only way a critter can move is to wait for the simulator to
ask it for a move. Although this experience can be frustrating, it is a good introduction to the kind of programming we do
with objects.

As the simulation runs, animals can collide by moving onto the same location. When two animals collide, they fight to
the death. The winning animal survives and the losing animal is removed from the simulation. The following table
summarizes the possible fighting choices each animal can make and which animal will win in each case. To help you
remember which beats which, notice that the starting letters and win/loss ratings of "roar, pounce, scratch" correspond to
those of "rock, paper, scissors." If the animals make the same choice, the winner is chosen at random.

 Critter #2
 ROAR POUNCE SCRATCH

ROAR random winner #2 wins #1 wins
POUNCE #1 wins random winner #2 wins Critter #1

SCRATCH #2 wins #1 wins random winner

There are several supporting files you should download on the course web site. Run CritterMain to start the simulation.
If you try to run a class other than CritterMain , you will receive an error such as the following:

Error: No 'main' method in 'Tiger' with arguments: ([Ljava.lang.String;)

2 of 4

Provided Files:

Each of the four classes you'll write will implement the following provided Critter interface:

public interface Critter {
 // methods to be implemented
 public int fight(char opponent);
 public Color getColor();
 public int getMove(CritterInfo info);
 public char getChar();

 // constants for directions
 public static final int NORTH = -2;
 public static final int SOUTH = 4;
 public static final int EAST = 3;
 public static final int WEST = 19;
 public static final int CENTER = 11;

 // constants for fighting
 public static final int ROAR = 28;
 public static final int POUNCE = -10;
 public static final int SCRATCH = 55;
}

Interfaces are discussed in detail in Chapter 9 of the textbook, but to do this assignment you just need to know a few
simple rules about interfaces. Your class headers should indicate that they implement this interface, as in:

public class Mouse implements Critter {
 ...
}

Because your classes implement the interface, you must include in each class a definition for each of the methods in the
interface (fight , getColor , getMove , and getChar). For example, below is a definition for a class called Stone that is
part of the simulation. Stone objects are displayed with the letter S, are gray in color, always stay on the current location
(returning CENTER for their move), and always choose to ROAR in a fight.

import java.awt.*; // for Color

public class Stone implements Critter {
 public int fight(char opponent) {
 return ROAR;
 }

 public Color getColor() {
 return Color.GRAY;
 }

 public int getMove(CritterInfo info) {
 return CENTER;
 }

 public char getChar() {
 return 'S';
 }
}

The Critter interface defines five constants for the various directions, and three additional constants for the three types
of fighting. You can refer to these directly in your code (NORTH, SOUTH, ROAR, etc) because you are implementing the
interface. Your code should not depend upon the specific values assigned to these constants, although you may assume
they will always be of type int . You will lose style points if you fail to use the named constants when appropriate.

3 of 4

Critters to Implement:
The following are the four critter classes you will implement. Each class must have only one constructor and that
constructor must accept exactly the parameter(s) described in the table. For random moves, each possible choice must be
equally likely.

Mouse

constructor public Mouse(Color color)

fighting behavior always SCRATCH
color the color passed to the constructor
movement behavior alternates between EAST and SOUTH in a zigzag pattern

(first EAST, then SOUTH, then EAST, then SOUTH, ...)
character 'M'

The Mouse constructor accepts a parameter representing the color in which the Mouse should be drawn. This color should
be returned each time the getColor method is called on the Mouse. For example, a Mouse constructed with a parameter
value of Color.RED will return Color.RED from its getColor method and will therefore appear red on the screen.

Tiger

constructor public Tiger()

fighting behavior always ROAR
color alternates between Color.ORANGE and Color.BLACK

(first Color.ORANGE , then Color.BLACK , then …)
movement behavior moves 3 steps in a random direction (NORTH, SOUTH, EAST, or

WEST), then chooses a new random direction and repeats
character 'T'

Elephant

constructor public Elephant(int steps)

fighting behavior If opponent is a Tiger ('T'), then ROAR; otherwise POUNCE
color Color.GRAY

movement behavior first go SOUTH steps times, then go WEST steps times,
then go NORTH steps times, then go EAST steps times
(a clockwise square pattern), then repeats

character 'E'

The Elephant constructor accepts a parameter representing the distance the Elephant will walk in each direction before
changing direction. For example, an Elephant constructed with a parameter value of 8 will walk 8 steps south, 8 steps
west, 8 steps north, 8 steps east, and repeat. You can assume that the value passed for steps is at least 1.

Husky

constructor public Husky()

fighting behavior you decide
color you decide
movement behavior you decide
character you decide

You will decide the behavior of the Husky class. (Your constructor must accept no parameters as shown above.)

4 of 4

Husky Class:
Part of your grade will be based upon writing creative and non-trivial behavior in your Husky class. The following are
some guidelines and hints about how to write an interesting Husky .

Each time a critter is asked to move (each time the getMove method is called by the simulator), the critter is passed a
parameter of type CritterInfo that provides useful information; your Husky may wish to make use of this information to
guide its movement behavior. For example, you can find out the critter’s current x and y coordinates by calling the getX
and getY methods, while the getWidth and getHeight methods return information about the size of the simulation world.
You can find out what is around the critter by calling getNeighbor and passing one of the direction constants as a
parameter. Whatever character is at that location will be returned.

public interface CritterInfo {
 public int getX();
 public int getY();
 public int getWidth();
 public int getHeight();
 public char getNeighbor(int direction);
}

Your Husky 's fighting behavior may want to utilize the parameter to the fight method, opponent , which tells you what
kind of critter you are fighting against (such as 'M' if you are fighting against a Mouse).

You can make your Husky return any character you like from its getChar method and any color you like from the
getColor method. In fact, critters are asked what display color and character to use on each round of the simulation, so
you can have a Husky that displays itself differently over time. Keep in mind that the getChar character is also passed to
other animals when they fight your Husky ; you may wish to strategize to try to fool other animals.

On the last day of class, we will host a Critter tournament consisting of battles in the following format: Two students'
Husky classes will be placed into the simulator world along with the other standard animals, with 25 of each animal type.
The simulator will be started and run until no significant activity is occurring or until 1000 moves have passed, whichever
comes first. The student whose Husky class has the higher sum of (critters killed + Huskies alive) wins the battle.

No grade points will be awarded for tournament performance. For example, a Husky that sits completely still may fare
well in the tournament, but it will not receive full points because it is too trivial.

Implementation Guidelines:
The provided GUI can run even if you haven't completed all of the required critter classes. The first three types of critters
increase in difficulty from Mouse to Tiger to Elephant . We recommend that you write the Mouse first. Look at the
Stone.java file as an example of the general structure of your classes.

Any critter class you write will not compile without having implementations of all methods from the Critter interface.
However, if you want to write some of the methods and leave others for later, write a "stub" version of the others that
returns a meaningless value (for example, always return CENTER if you don't want to write the Mouse's movement code
yet).

In the case of each animal, it will be impossible to implement the behavior if you don't have the right state in your object.
As you start writing each class, spend some time thinking about what state will be needed to achieve the desired behavior.

Stylistic Guidelines:
Some of the style points for this assignment will be awarded on the basis of how much creativity you put into defining an
interesting Husky class. These points allow us to reward the students who spend time writing an interesting critter
definition. Your Husky 's behavior should not be trivial or closely match that of any existing animal shown in class.

Style points will also be awarded on your ability to express each critter's operations elegantly. Your objects should be
encapsulated. Follow past stylistic guidelines about indentation, whitespace, identifiers, and localizing variables. Place
comments at the beginning of each class. Each class should be in its own file. Document each critter's behavior in
comments at the top of its file and/or at the top of each method. Your critters should not produce any console output.

