CSE 142, Spring 2007

Programming Assignment #8: Critter Safari (20 points)
Due: Tuesday, May 29, 2007, 4:00 PM

adapted from " Critters" assignment by Stuart Reges, with ideas from Steve Gribble

This assignment will give you practice with cregtoiasses.
Turn in files named/iouse.java , Tigerjava , Elephantjava , andHusky.java

Program Behavior:

You will write a set of classes that define thedebr of various animals. You will be provided wigeveral classes that
implement a graphical simulation of a 2D world wmiany animals moving around in it. Different kirmfsanimals move
in different ways; as you write each class, youda#ning those differences.

On each round of the simulation, each critter ikeds
which direction it wants to move. On each rounaghe
critter can move one square north, south, east, westay
at its current location. Critters move around iwald of

finite size, but the word is toroidal (going offetend to the
right brings you back to the left and vice versaing off

the end to the top brings you back to the bottonh\doe

1| versa). The critter world is divided into cellsatthave
integer coordinates. There are 60 cells acrosHanklls

up and down. The upper-left cell has coordina@ej,

increasing x values move you right and increasinglyes
move you down (similar to therawingPanel).

=lolx]
Classes (Alive+Kill=Totaly:
. Bear 25+0=25

Send | Request

This program will probably be confusing at firstchase
this is the first time where you are not writinge tihain
method (the client code that uses your animal ¢&jec
therefore your code will not be in control of theecall
program's execution. Instead, you are definingraes of
objects that become part of a larger system. kamele, you might find that you want to have ongair critters make
several moves all at once—you won't be able tohdb t The only way a critter can move is to waittfee simulator to
ask it for a move. Although this experience carfrbstrating, it is a good introduction to the kiafiprogramming we do
with objects.

As the simulation runs, animals can collide by mgvonto the same location. When two animals aaflttiey fight to

the death. The winning animal survives and théngpsinimal is removed from the simulation. Theldaiing table

summarizes the possible fighting choices each driara make and which animal will win in each cade help you

remember which beats which, notice that the s@ugtters and win/loss ratings of "roar, pouncea®h" correspond to
those of "rock, paper, scissors.” If the animadékenthe same choice, the winner is chosen at random

Critter #2
ROAR POUNCE SCRATCH
ROAR random winner #2 wins #1 wins
Critter #1 | POUNCE #1 wins random winner #2 wins
SCRATCH #2 wins #1 wins random winner

There are several supporting files you should doaghlon the course web site. RtriterMain

If you try to run a class other tharitterMain

Error: No 'main’ method in 'Tiger' with arguments:

, you will receive an error such as the following:

([Ljava.lang.String;)

to start the simulation.

1of4

Provided Files:

Each of the four classes you'll write will impleméime following providedtritter interface:

public interface Critter {
/I methods to be implemented
public int fight(char opponent);
public Color getColor();
public int getMove(CritterInfo info);
public char getChar();

/I constants for directions

public static final int NORTH = -2;
public static final int SOUTH = 4;
public static final int EAST = 3;
public static final int WEST = 19;
public static final int CENTER = 11;

/I constants for fighting

public static final int ROAR = 28;

public static final int POUNCE = -10;

public static final int SCRATCH = 55;
}

Interfaces are discussed in detail in Chapter theftextbook, but to do this assignment you jugtdn® know a few
simple rules about interfaces. Your class heagterald indicate that they implement this interfaa®in:

public class Mouse implements Critter {

-

Because your classes implement the interface, yat imclude in each class a definition for eaclthef methods in the
interface {ight , getColor , getMove , andgetChar). For example, below is a definition for a clasdled Stone that is
part of the simulationstone objects are displayed with the letter S, are gnagolor, always stay on the current location
(returningCENTERfor their move), and always choose to ROAR inghtfi

import java.awt.*; // for Color

public class Stone implements Critter {
public int fight(char opponent) {
return ROAR;
}

public Color getColor() {
return Color.GRAY;
}

public int getMove(CritterInfo info) {
return CENTER;
}

public char getChar() {
return 'S’;
}
}

Thecritter interface defines five constants for the varionsations, and three additional constants for tired types

of fighting. You can refer to these directly inuocode ORTH SOUTH ROAR etc) because you are implementing the
interface. Your code should not depend upon tleeiBp values assigned to these constants, althgaghmay assume
they will always be of typat . You will lose style points if you fail to useemamed constants when appropriate.

20f4

Critters to Implement:

The following are the four critter classes you vitiplement. Each class must have only one cortsiriand that
constructor must accept exactly the parameter@riteed in the table. For random moves, each plesshoice must be
equally likely.

Mouse

constr uctor public Mouse(Color color)

fighting behavior alwaysSCRATCH

color the color passed to the constructor

movement behavior | alternates betweesnsTandsSOUTHN a zigzag pattern
(first EAST, thensouTH thenEAST, thensouTH ...)

character M

The Mouse constructor accepts a parameter representingolbe ia which themouse should be drawn. This color should
be returned each time tlgetColor method is called on theouse. For example, &ouse constructed with a parameter
value ofColor.RED will return Color.RED from itsgetColor method and will therefore appear red on the screen

Tiger

constructor public Tiger()

fighting behavior alwaysROAR

color alternates betweeatblor. ORANGE andColor.BLACK

(first Color.ORANGE , thenColor.BLACK , then ...)

movement behavior | moves 3 steps in a random directiGlORTHSOUTHEAST, Or

WESYJ, then chooses a new random direction and repeats

char acter T

Elephant

constructor public Elephant(int steps)

fighting behavior If opponent is a Tiger1'), thenROAR otherwisePOUNCE
color Color.GRAY

movement behavior | first goSOUTHsteps times, then goVESTsteps times,
then goNORTHsteps times, then g@ASTsteps times
(a clockwise square pattern), then repeats

character E

TheElephant constructor accepts a parameter representingistende theelephant will walk in each direction before
changing direction. For example, alaphant constructed with a parameter value of 8 will walkteps south, 8 steps
west, 8 steps north, 8 steps east, and repeat.cafoassume that the value passedtéps is at least 1.

Husky

constructor public Husky()
fighting behavior you decide
color you decide
movement behavior | you decide
character you decide

You will decide the behavior of theusky class. (Your constructor must accept no parame@®shown above.)

30f4

Husky Class:

Part of your grade will be based upon writing areatind non-trivial behavior in yowusky class. The following are
some guidelines and hints about how to write agr@stingHusky .

Each time a critter is asked to move (each timeg#iiove method is called by the simulator), the crittep&ssed a
parameter of typeritterinfo that provides useful information; yodusky may wish to make use of this information to
guide its movement behavior. For example, youfoahout the critter's current x and y coordinatgscalling thegetx
andgety methods, while thgetwidth andgetHeight methods return information about the size of thaukation world.

You can find out what is around the critter by ic@lgetNeighbor and passing one of the direction constants as a
parameter. Whatever character is at that locatitbe returned.

public interface Critterinfo {
public int getX();
public int getY();
public int getWidth();
public int getHeight();
public char getNeighbor(int direction);

}

Your Husky 's fighting behavior may want to utilize the paraendo thefight method,opponent , which tells you what
kind of critter you are fighting against (suchnas if you are fighting against iouse).

You can make youHusky return any character you like from igstChar method and any color you like from the
getColor method. In fact, critters are asked what disjglalpr and character to use on each round of thalatman, so
you can have ausky that displays itself differently over time. Kespmind that theyetChar character is also passed to
other animals when they fight yolduasky ; you may wish to strategize to try to fool othamaals.

On the last day of class, we will host a Crittemrtmment consisting of battles in the followingrfat: Two students'
Husky classes will be placed into the simulator worlong with the other standard animals, with 25 oheagimal type.
The simulator will be started and run until no #igant activity is occurring or until 2000 moveave passed, whichever
comes first. The student whosesky class has the higher sum of (critters killed + kies alive) wins the battle.

No grade points will be awarded for tournament quenance. For example,Hasky that sits completely still may fare
well in the tournament, but it will not receivelfpbints because it is too trivial.

Implementation Guidelines:

The provided GUI can run even if you haven't congaleall of the required critter classes. The tinsee types of critters
increase in difficulty fromMouse to Tiger to Elephant . We recommend that you write tieuse first. Look at the
Stone.java file as an example of the general structure of yhasses.

Any critter class you write will not compile withbhaving implementations of all methods from thiter interface.
However, if you want to write some of the methods éeave others for later, write a "stub" versidrthe others that
returns a meaningless value (for example, alwagsr€ENTERIf you don't want to write th@louse's movement code

yet).
In the case of each animal, it will be impossildiéniplement the behavior if you don't have the trigflate in your object.
As you start writing each class, spend some tirimkithg about what state will be needed to achiéedesired behavior.

Stylistic Guidelines:

Some of the style points for this assignment wélldwarded on the basis of how much creativity yailimto defining an
interestingHusky class. These points allow us to reward the stsdefno spend time writing an interesting critter
definition. YourHusky 's behavior should not be trivial or closely maticat of any existing animal shown in class.

Style points will also be awarded on your abilityexpress each critter's operations elegantly. rbjects should be
encapsulated. Follow past stylistic guidelinesutbindentation, whitespace, identifiers, and lagaly variables. Place
comments at the beginning of each class. Eacls alasuld be in its own file. Document each critdrehavior in
comments at the top of its file and/or at the tbpach method. Your critters should not produceamsole output.

4 of 4

