
CSE 142, Winter 2007
Final Exam

1. Expressions (5 points)

For each expression in the left-hand column, indicate its value in the right-hand column. Be sure to list a constant of
appropriate type (e.g., 7.0 rather than 7 for a double , String s in " quotes").

2. Array Mystery (10 points)

Consider the following method:

public static void mystery(int[] array) {
 for (int i = 1; i < array.length - 1; i++) {
 array[i] = array[i - 1] + array[i + 1];
 }
}

Indicate in the right-hand column what values would be stored in the array after the method mystery executes if the
integer array in the left-hand column is passed as a parameter to mystery .

Expression Value

22 / 4 / 2.0 - 1.0 / 2

1 < 2 && (3 == 4 || 5 != 5)

10 % 25 + 10 % (11 % 4)

1 + 2 + "3 + 4" + 5 + "(int) 6.0"

5 < 3 || !(2 + 2 >= 4)

Method Call Final Array Contents
int[] a1 = {42};
mystery(a1);

int[] a2 = {8, 2, 3};
mystery(a2);

int[] a3 = {14, 7, 5, 6};
mystery(a3);

int[] a4 = {1, 0, 1, 0, 1, 0};
mystery(a4);

int[] a5 = {10, 1, 4, 2, 6, 8, 1};
mystery(a5);

3. Inheritance Mystery (10 points)

Assume that the following classes have been defined:

Given the classes above, what output is produced by the following code?

Hulk[] heroes = {new Batman(), new WonderWoman(), n ew Hulk(), new Superman()};
for (int i = 0; i < heroes.length; i++) {
 System.out.println(heroes[i]);
 heroes[i].methodA();
 heroes[i].methodB();
 System.out.println();
}

public class Superman extends Batman {
 public void methodB() {
 System.out.println("Superman B");
 }

 public String toString() {
 return "Up up and away!";
 }
}

public class Hulk {
 public String toString() {
 return "Hulk smash!";
 }

 public void methodA() {
 System.out.println("Hulk A");
 }

 public void methodB() {
 System.out.println("Hulk B");
 }
}

public class WonderWoman extends Superman {
 public void methodA() {
 System.out.println("WonderWoman A");
 }
}

public class Batman extends Hulk {
 public void methodA() {
 System.out.println("Batman A");
 }

 public String toString() {
 return "I'm Batman.";
 }
}

4. File Processing (15 points)

Write a method named count that accepts two parameters: a Scanner holding a sequence of words, and a String
representing a word. The method should count how many times that word occurs in the input, case-insensitively.
For the purposes of this problem, we will use whitespace to separate words. (This is the same definition that the
Scanner uses to separate tokens.)

For example, suppose the Scanner contains the following words:

The man on the hill by THE
 plain with

the telescope saw them there.

For a Scanner variable named input referring to the input above, the call of count(input, "the") should
return 4. The call of count(input, "wit") should return 0.

5. File Processing (10 points)

Write a method named analyzeStocks that accepts as a parameter a Scanner for an input file. Each line of input
holds a person's name followed by some number of stock purchases. Each stock purchase contains the stock's
symbol, the price at which it was bought, and the price at which it was sold. The method should output to the
console each person's name and total profit, which is the difference between the total amount for all stocks bought
and the total amount for all stocks sold. For example, consider the following input file:

Victoria INTC 18.8 20.8
Andrew MSFT 27.1 29.3 YHOO 44.6 40.6 GOOG 382.1 379 .6
Justine
Josh NVDA 10.0 29.1 BNSN 7.11 19.79 VIA 29.0 39.5 M RTY 15.90 25.0

For a Scanner variable named input referring to the input above, the call of analyzeStocks(input) should
produce the following output:

Victoria: total profit = $2.0
Andrew: total profit = $-4.300000000000011
Justine: total profit = $0.0
Josh: total profit = $40.88

The format of your output must exactly match that shown above. Notice that some people (such as Justine above)
might buy no stocks, resulting in a profit of 0. Do not worry about rounding the average words per line. You may
assume that each line contains valid input.

6. Arrays (15 points)

Write a method named isReverse that accepts two arrays of integers as parameters and returns true if they
contain the same elements in the opposite order, and false otherwise. For example, if two variables named list1
and list2 store the following values:

int[] list1 = {10, 15, 24, 32, 19};
int[] list2 = {19, 32, 24, 15, 10};

Then the call of isReverse(list1, list2) should return true .

For your method to return true , the arrays must be the same length. You may assume that each array's length is at
least 1.

7. Arrays (10 points)

Write a method named wrapHalf that accepts an array of integers as a parameter and rearranges its elements so
that the first half and second half of the array are switched. For example, if an array named list1 stores the values
{10, 20, 30, 40, 50, 60} , after the call of wrapHalf(list1) the array should store the values {40, 50,
60, 10, 20, 30} .

If the length of the array is odd, consider the first half to be the larger half and the second half to be the smaller. For
example, if an array named list2 stores the values {1, 2, 3, 4, 5} , after the call of wrapHalf(list2) the
array should store the values {4, 5, 1, 2, 3} .

You may use an auxiliary data structure or array to help you solve this problem if you like. It may also help you to
think of the task of wrapping as performing many rotations on the array. You may assume that the array passed to
your method will have a length of at least 2.

8. Critters (15 points)

Write the getMove method for the class Baboon that implements the Critter interface from Homework 8.
Instances of the Baboon class should move in a clockwise "spiral" pattern as follows: NORTH 1 time, EAST 2 times,
SOUTH 3 times, WEST 4 times, NORTH 5 times, EAST 6 times, SOUTH 7 times, WEST 8 times, then repeats.

Use the constants for directions defined in the Critter interface. You may add anything needed (fields, other
methods, constructors, etc.) to implement getMove appropriately.

import java.awt.*; // for Color

public class Baboon implements Critter {
 // declare any necessary fields here

 // fight, getColor, toString methods omitted (y ou do not need to write them)

 public int getMove(CritterInfo info) {
 // complete the getMove method here

9. Classes (10 points)

This question uses the Date class as specified at right (this is the
same Date class as seen on past sample final exams).

Write a method named subtractWeeks that will be placed inside
the Date class. The subtractWeeks method accepts an integer as a
parameter and shifts the date represented by the Date object
backward by that many weeks. A week is considered to be exactly 7
days. You may assume the value passed is non-negative. Note that
subtracting weeks might cause the date to wrap into previous months
or years.

For example, if the following Date is declared in client code:

Date d = new Date(9, 19);

The following calls to the subtractWeeks method would modify
the Date object's state as indicated in the comments. Remember that
Date objects do not store the year; the date before January 1st is
December 31st. Date objects also ignore leap years.

Date d = new Date(9, 19);
d.subtractWeeks(1); // d is now 9/12
d.subtractWeeks(2); // d is now 8/29
d.subtractWeeks(5); // d is now 7/25
d.subtractWeeks(20); // d is now 3/7
d.subtractWeeks(110); // d is now 1/26
 // (2 years prior)

public class Date {
 private int month;
 private int day;

 public Date(int m, int d) {
 month = m;
 day = d;
 }

 public int getDay() {
 return day;
 }

 public int getMonth() {
 return month;
 }

 // returns the number of days
 // in the given month
 public int numDays(int m) {
 if (m == 2) {
 return 28;
 } else if (m == 4 ||
 m == 6 ||
 m == 9 ||
 m == 11) {
 return 30;
 } else {
 return 31;
 }
 }

 // your method would go here
}

