

11/27/07

>>> Overview

* objects
* class
* self
* in-object methods
* nice printing
* privacy
* property
* static vs. dynamic
* inheritance

>>> clientside

Objects are used nearly identically to those in Java. Suppose we want a better way of storing
recipes. Basically, its all the same except that to create a new object you don't need to say
new .

r = Recipe()
r.add("milk",2) # cups
r.add("cheese",1) # cups
r.add("pasta",1) # lbs dry

if r.needs("milk") and r.how_much("milk")>1:
print "We need more milk!"

recipe_client.py
1
2
3
4
5
6
7
8
9
10
11

>>> class and self

The syntax for classes in Python is similar to all other conversions. However, there are some
differences. The primary difference is that instance variables must be accessed using the
self keyword. This is similar to Java's this . Treat it as if self was an external object.
Another difference is that the constructor is called __init__.

class Recipe:
def __init__(self):

self.recipe = {}

def needs(self,food):
return food.lower() in self.recipe

def add(self,food,amount):
self.recipe[food] = amount

recipe.py
1
2
3
4
5
6
7
8
9
10
11

>>> methods

class Recipe:
def __init__(self):

self.recipe = {}

def needs(self,food):
return food.lower() in self.recipe

def add(self,food,amount):
if not self.needs(food):

self.recipe[food] = amount

recipe.py
1
2
3
4
5
6
7
8
9
10
11

Unlike in Java, methods also need to be called on self. Just remember to treat self as the
object as if you were a client.

>>> nice printing

class Recipe:
def __init__(self):

self.recipe = {}

def needs(self,food):
return food.lower() in self.recipe

def add(self,food,amount):
if not self.needs(food):

self.recipe[food] = amount

def __str__(self):
result = "Recipe:\n"
for food in self.recipe.keys():

result += food + " - " + str(self.recipe[food]) +"\n"
return result

recipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Like Java's toString, Python has a special method to change an object to a string. It is __str__.

>>> privacy?

class Recipe:
def __init__(self):

self._recipe = {}

def needs(self,food):
return food.lower() in self._recipe

def add(self,food,amount):
if not self.needs(food):

self._recipe[food] = amount

recipe.py
1
2
3
4
5
6
7
8
9
10
11

Python has a weak sense of privacy unlike Java. Guido Van Rossum, the creator of Python,
describes it on his blog as an "open kimono" language. There are two ways to make both
methods and variables semi-private. Prefixing the name with a single underscore is a polite
"Don't touch." and a double underscore predictably mangles the name of the method or
variable to make it harder to use.

>>> property

class Recipe:
def __init__(self):

self._servings = 4

def get_servings():
pass

def set_servings(self,s):
pass

servings = property(get_servings,set_servings)

recipe.py
1
2
3
4
5
6
7
8
9
10
11

To compensate for Python's weak sense of privacy, there is a way of defining a property of an
object to limit its use.

>>> static

Java's static keyword specifies that the method or variable is used within a class and not an
object (an instance of a class). This can be mimiced by not having self as the first argument in
the method.

class Incomplete:
def static(args):

...

def not_static(self,args):
...

Incomplete.static() # a static call
i = Incomplete()
i.not_static() # a non-static call

incomplete.py
1
2
3
4
5
6
7
8
9
10
11

>>> inheritance

Like Java, Python classes can inherit from other classes. In fact, unlike Java, Python can
inherit from multiple classes. Here is a simple example of single inheritance. In the example
Python is a subclass of Animal and uses Animal's speak method but its own walk method.

class Animal:
def walk(self):

some code

def speak(self):
pass

class Python (Animal):
def walk(self):

some other code

animals.py
1
2
3
4
5
6
7
8
9
10
11

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0

© 2007 Scott Shawcroft, Some Rights Reserved

Python® and the Python logo are either a registered trademark or trademark of the Python
Software Foundation. Java™ is a trademark or registered trademark of Sun Microsystems, Inc.

in the United States and other countries.

