

10/23/07

>>> Overview

* if else
* returns
* input

>>> if

Like many things in the transition from
Java to Python, curly braces are
replaced with colons and whitespace,
the parentheses are dropped and &&, ||
and ! change.

// 1 for english
// 2 for german
int translator = 1;
if (translator == 1) {

english();
} else if (translator == 2) {

german();
} else {

System.out.println("None");
}

Translator.java
1
2
3
4
5
6
7
8
9
10

translator = 1
if translator==1:

english()
elif translator==2:

german()
else:

print "None"

translator.py
1
2
3
4
5

<
>
<=
>=
==
!=
or
and
not

<
>
<=
>=
==
!=
||
&&
!

Java python

Notice: "else if" becomes "elif"

>>> strings
Just like in Java, strings are objects. Here are some things you can do with them:

s.capitalize() "wow".capitalize() => "Wow"
s.endswith(<str>) "wow".endswith("w") => True
s.find(<substr>) "wow".find("o") => 1
s.islower() "wow".islower() => True
s.isupper() "wOw".isupper() => False
s.lower() "wOw".lower() => "wow"
s.split(<str>) "hmm wow".split(" ") => ["hmm","wow"]
s.startswith(<str>) "hmm".startswith("hm") => True
s.strip() " ack ".strip() => "ack"
s.swapcase() "wOw".swapcase() => "WoW"
s.upper() "wow".upper() => "WOW"

string methods

>>> strings as sequences

As we saw with loops, python has
certain sequence types such as
lists. Strings are also sequences.
Indexes start with 0 the left and -1
on the right.

seq[<index>] "look!"[3] => "k"
 "look!"[-1] => "!"
seq[<start>:<end>] "shocking"[4:] => "king"
 "shocking"[3:5] => "ock"
 "shocking"[-3:] => "ing"
len(<seq>) len("whoa") => 4

sequence operations

"shocking"
-8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6 7from the front

from the back

Indexing

example: "shocking"[2:-4] => "oc"

>>> return

Returns in python are super easy. Simply
"return <value>" instead of "return
<value>;" and forget about the types.

def funky(s):
if len(s)<=3:

return s.lower()
else:

return s.upper()

s1 = funky("wow")
print s1 #"wow"
s2 = funky("whoa")
print s2 #"WHOA"

funky.py
1
2
3
4
5
6
7
8
9
10

>>> input() vs. raw_input()

There are two ways of getting input. The first is
input(). It takes in input until enter is hit and
then tries to interpret it into python. However,
this way only works well for numbers.

The second way is to use raw_input()
which returns the entire line as a string.
Once this is done, the string can be split
into smaller strings and changed to the
desired type.

>>> x = input("yes? ")
yes? y
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<string>", line 1, in <module>
NameError: name 'y' is not defined
>>> x = input("yes? ")
yes? 2
>>> print x
2
>>> x = input("num? ")
num? 2.0
>>> print x
2.0

#take a number in
x = input("x? ")
print x

#take a sentence to tokenize it
sent = raw_input("sentence: ")
for w in sent.split(" "):

print "word: " + w

inputs.py
1
2
3
4
5
6
7
8
9
10

>>> igpay atinlay

Translators:
1. Angry.
2. Pig Latin.

Which translator would you like to use? 2

What would you like me to translate? Look! Pig latin!

Translated:
Ooklay! Igpay atinlay!

scott @ yossarian ~ $ python translate.py

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-nc-sa/3.0

© 2007 Scott Shawcroft, Some Rights Reserved

Python® and the Python logo are either a registered trademark or trademark of the Python
Software Foundation. Java™ is a trademark or registered trademark of Sun Microsystems, Inc.

in the United States and other countries.

