
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 6:
File Processing

2Copyright 2006 by Pearson Education

Chapter outline
� file input using Scanner

� File objects

� exceptions

� file names and folder paths

� token-based file processing

� line-based file processing

� processing a file line by line

� searching for a particular line record in a file

� advanced I/O

� prompting for a file name

� file output using PrintStream

3Copyright 2006 by Pearson Education

File input using ScannerFile input using Scanner

reading: 6.1 - 6.2, 5.3

4Copyright 2006 by Pearson Education

File objects
� Programmers refer to input/output as "I/O".

� The File class in the java.io package represents files.
� import java.io.*;

� Create a File object to get information about a file on the disk.
(Creating a File object doesn't create a new file on your disk.)

File f = new File("example.txt");
if (f.exists() && f.length() > 1000) {

f.delete();
}

whether this file exists on diskexists()

returns file's namegetName()

changes name of filerenameTo(file)

removes file from diskdelete()

returns number of characters in filelength()

returns whether file is able to be readcanRead()

DescriptionMethod name

5Copyright 2006 by Pearson Education

Reading data from files
� To read a file, pass a File object as a parameter when
constructing a Scanner .

� Scanner for a file, general syntax:
Scanner <name> = new Scanner(new File(" <file name>"));

Example:

Scanner input = new Scanner(new File("numbers.txt"));

or:

File f = new File("numbers.txt");

Scanner input = new Scanner(f);

6Copyright 2006 by Pearson Education

File names and paths
� relative path: does not specify any top-level folder

� "names.dat"

� "input/kinglear.txt"

� absolute path: specifies drive letter or top "/" folder
� "C:/Documents/smith/hw6/input/data.csv"

� Windows systems can also use backslashes to separate folders.

� When you construct a File object with a relative path,

Java assumes it is relative to the current directory.

� Scanner input = new Scanner(new File("data/readme.t xt"));

� If our program is in H:/hw6 ,
Scanner will look for H:/hw6/data/readme.txt .

7Copyright 2006 by Pearson Education

Compiler error with files
� The following program does not compile:

import java.io.*; // for File
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args) {

Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

� The following compiler error is produced:

ReadFile.java:6: unreported exception
java.io.FileNotFoundException; must be caught or de clared

to be thrown

Scanner input = new Scanner(new File("data.txt"));

^

8Copyright 2006 by Pearson Education

Exceptions
� exception: An object that represents a program error.

� Programs with invalid logic will cause exceptions.

� Examples:

� dividing by 0

� calling charAt on a String and passing too large an index

� trying to read a file that does not exist

� We say that a logical error throws an exception.

� It is also possible to catch (handle or fix) an exception.

9Copyright 2006 by Pearson Education

Checked exceptions
� checked exception: An error that must be handled by

our program (otherwise it will not compile).

� We must specify what our program will do to handle any

potential file I/O failures.

� We must either:

� declare that our program will handle ("catch") the exception, or

� state that we choose not to handle the exception

(and we accept that the program will crash if an exception occurs)

10Copyright 2006 by Pearson Education

Throwing exception syntax
� throws clause: Keywords placed on a method's header

to state that it may generate an exception.

� It's like a waiver of liability:
"I hereby agree that this method might throw an exception, and
I accept the consequences (crashing) if this happens."

� throws clause, general syntax:
public static <type> <name>(<params>) throws <type> {

� When doing file I/O, we use FileNotFoundException .

public static void main(String[] args)

throws FileNotFoundException {

11Copyright 2006 by Pearson Education

Fixed compiler error
� The following corrected program does compile:

import java.io.*; // for File, FileNotFoundExce ption
import java.util.*; // for Scanner

public class ReadFile {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("data.txt"));
String text = input.next();
System.out.println(text);

}
}

12Copyright 2006 by Pearson Education

Files and input cursor
� Consider a file numbers.txt that contains this text:

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� A Scanner views all input as a stream of characters:

� 308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

� input cursor: Current position of the Scanner in the input.

13Copyright 2006 by Pearson Education

Input tokens
� token: A unit of user input, separated by whitespace.

� When you call methods such as nextInt , the Scanner splits the

input into tokens.

� Example: If an input file contains the following:
23 3.14

"John Smith"

� The Scanner can interpret the tokens as the following types:

Token Type(s)
1. 23 int , double , String
2. 3.14 double , String
3. "John String
4. Smith" String

14Copyright 2006 by Pearson Education

Consuming tokens
� consuming input: Reading input and advancing the cursor.

� Each call to next , nextInt , etc. advances the cursor to the end

of the current token, skipping over any whitespace.

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.nextDouble()

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

input.nextDouble()

308.2\n 14.9 7.4 2.8\n\n\n3.9 4.7 -15.4\n2.8\n

^

15Copyright 2006 by Pearson Education

File input question
� Consider the following input file numbers.txt :

308.2

14.9 7.4 2.8

3.9 4.7 -15.4

2.8

� Write a program that reads the first 5 values from this
file and prints them along with their sum.

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

Sum = 337.19999999999993

16Copyright 2006 by Pearson Education

File input answer
// Displays the first 5 numbers in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.txt"));
double sum = 0.0;
for (int i = 1; i <= 5; i++) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

17Copyright 2006 by Pearson Education

Testing for valid input (Ch5.3)
� A Scanner has methods to see what the next token will be:

� These methods do not actually consume input, just give information
about what input is waiting.

returns true if there are any more lines of input

to read (always true for console input)

hasNextLine()

returns true if there is a next token and it can
be read as a double

hasNextDouble()

returns true if there is a next token and it can
be read as an int

hasNextInt()

returns true if there are any more tokens of

input to read (always true for console input)

hasNext()

DescriptionMethod

18Copyright 2006 by Pearson Education

Scanner condition examples
� The hasNext methods are useful to avoid exceptions.

Scanner console = new Scanner(System.in);
System.out.print("How old are you? ");
if (console.hasNextInt()) {

int age = console.nextInt(); // will not crash!
System.out.println("Wow, " + age + " is old!");

} else {
System.out.println("You didn't type an integer.");

}

� The hasNext methods are also useful with file scanners.

Scanner input = new Scanner(new File("example.txt")) ;
while (input.hasNext()) {

String token = input.next(); // will not crash!
System.out.println("token: " + token);

}

19Copyright 2006 by Pearson Education

File input question 2
� The preceding Echo program is impractical;
it only processes 5 values from the input file.

� Modify the program to process the entire file:

number = 308.2

number = 14.9

number = 7.4

number = 2.8

number = 3.9

number = 4.7

number = -15.4

number = 2.8

Sum = 329.29999999999995

20Copyright 2006 by Pearson Education

File input answer 2
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*; // for File
import java.util.*; // for Scanner

public class Echo2 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
while (input.hasNextDouble()) {

double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

}
System.out.println("Sum = " + sum);

}
}

21Copyright 2006 by Pearson Education

File input question 3
� Modify the program again to handle files that also
contain non-numeric tokens.

� The program should skip any such tokens.

� For example, it should produce the same output as
before when given this input file:

308.2 hello

14.9 7.4 bad stuff 2.8

3.9 4.7 oops -15.4

:-) 2.8 @#*($&

22Copyright 2006 by Pearson Education

File input answer 3
// Displays each number in the given file,
// and displays their sum at the end.

import java.io.*;
import java.util.*;

public class Echo3 {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("numbers.dat"));
double sum = 0.0;
while (input.hasNext()) {

if (input.hasNextDouble()) {
double next = input.nextDouble();
System.out.println("number = " + next);
sum += next;

} else {
input.next(); // consume the bad token

}
}
System.out.println("Sum = " + sum);

}
}

23Copyright 2006 by Pearson Education

File processing question
� Write a program that accepts an input file containing integers

representing daily high temperatures.

Example input file:

42 45 37 49 38 50 46 48 48 30 45 42 45 40 48

� Your program should print the difference between each adjacent
pair of temperatures, such as the following:

Temperature changed by 3 deg F
Temperature changed by -8 deg F
Temperature changed by 12 deg F
Temperature changed by -11 deg F
Temperature changed by 12 deg F
Temperature changed by -4 deg F
Temperature changed by 2 deg F
Temperature changed by 0 deg F
Temperature changed by -18 deg F
Temperature changed by 15 deg F
Temperature changed by -3 deg F
Temperature changed by 3 deg F
Temperature changed by -5 deg F
Temperature changed by 8 deg F

24Copyright 2006 by Pearson Education

File processing answer
import java.io.*;
import java.util.*;

public class Temperatures {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("weather.dat")) ;
int temp1 = input.nextInt();
while (input.hasNextInt()) {

int temp2 = input.nextInt();
System.out.println("Temperature changed by " +

(temp2 - temp1) + " deg F");
temp1 = temp2;

}
}

}

25Copyright 2006 by Pearson Education

Common Scanner errors
� NoSuchElementException

� You read past the end of the input.

� InputMismatchException
� You read the wrong type of token (e.g. read "hi" as int).

� Finding and fixing these exceptions:

� Carefully read the exception text for line numbers in your code
(the first line that mentions your file; often near the bottom):

Exception in thread "main" java.util.NoSuchElementE xception

at java.util.Scanner.throwFor(Scanner.java:838)

at java.util.Scanner.next(Scanner.java:1347)

at CountTokens.sillyMethod(CountTokens.java:19)

at CountTokens.main(CountTokens.java:6)

26Copyright 2006 by Pearson Education

LineLine--based file processingbased file processing

reading: 6.3

27Copyright 2006 by Pearson Education

Line-by-line processing
� The Scanner 's nextLine method reads a line of input.

� It consumes the characters from the input cursor's current
position to the next \n character.

� Reading a file line-by-line, general syntax:

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

<process this line...>;

}

28Copyright 2006 by Pearson Education

Line-based input example
� Given the following input data:

23 3.14 John Smith "Hello world"
45.2 19

� The Scanner can read the following input:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

input.nextLine()
23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2 19\n

^

� The \n character is consumed but not returned.

29Copyright 2006 by Pearson Education

File processing question
� Write a program that reads a text file and "quotes" it by
putting a > in front of each line.

� Example input file, message.txt :

Please let the students know that
I'll be curving the grades downward!

Love, Prof. Meanie

� Example output:

> Please let the students know that
> I'll be curving the grades downward!
>
> Love, Prof. Meanie

30Copyright 2006 by Pearson Education

File processing answer
import java.io.*;

import java.util.*;

public class QuoteMessage {

public static void main(String[] args)

throws FileNotFoundException {

Scanner input = new Scanner(new File("message.txt"));

while (input.hasNextLine()) {

String line = input.nextLine();

System.out.println(">" + line);

}

}

}

31Copyright 2006 by Pearson Education

Processing tokens of one line
� Given a file with the following contents:

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jennifer 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing hours worked by one person:

Enter a name: Brad

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Observations:

� Neither line-based nor token-based processing is quite right.

� The better solution is a hybrid approach:

� Break the overall input into lines.

� Break each line into tokens.

32Copyright 2006 by Pearson Education

Scanners on Strings
� A Scanner can tokenize a String , such as a line of a file.

Scanner <name> = new Scanner(<String>);

� Example:

String text = "1.4 3.2 hello 9 27.5";
Scanner scan = new Scanner(text);
System.out.println(scan.next()); // 1.4
System.out.println(scan.next()); // 3.2
System.out.println(scan.next()); // hello

33Copyright 2006 by Pearson Education

Tokenizing lines
� We can use string Scanner s to tokenize each line of a file.

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process this line...>;

}

34Copyright 2006 by Pearson Education

Line processing example
� Example: Count the tokens on each line of a file.

Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int count = 0;
while (lineScan.hasNext()) {

String token = lineScan.next();
count++;

}
System.out.println("Line has " + count + " tokens");

}

Output to console:

Line has 6 tokens

Line has 2 tokens

Input file input.txt :

23 3.14 John Smith "Hello world"

45.2 19

35Copyright 2006 by Pearson Education

Complex input question
� Write a program that computes the hours worked and
average hours per day for a particular person.

� Input file hours.txt :
123 Susan 12.5 8.1 7.6 3.2
456 Brad 4.0 11.6 6.5 2.7 12
789 Jennifer 8.0 8.0 8.0 8.0 7.5 7.0

� Example log of execution:
Enter a name: Brad
Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Example log of execution:
Enter a name: Harvey
Harvey was not found

� Hint: It may be easier to begin by printing all employee's hours.

36Copyright 2006 by Pearson Education

Complex input answer
// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Enter a name: ");
String searchName = console.nextLine(); // e.g. "B RAD"
boolean found = false; // a bool ean flag

Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad "
if (name.equalsIgnoreCase(searchName)) {

processLine(lineScan, name, id);
found = true; // we found them!

}
}

if (!found) { // found will be true if we ever f ound the person
System.out.println(searchName + " was not found");

}
}

37Copyright 2006 by Pearson Education

Complex input answer 2
...

// totals the hours worked by one person and output s their info
public static void processLine(Scanner lineScan,

String name, int id) {

double sum = 0.0;
int count = 0;
while (lineScan.hasNextDouble()) {

sum += lineScan.nextDouble();
count++;

}

double average = sum / count;
System.out.println(name + " (ID#" + id + ") worked " +

sum + " hours (" + average + " hours/day)");
}

}

38Copyright 2006 by Pearson Education

IMDB movie ratings problem
� Consider the following Internet Movie Database (IMDB) Top-250

data from a text file in the following format:
1 196376 9.1 Shawshank Redemption, The (1994)
2 93064 8.9 Godfather: Part II, The (1974)
3 81507 8.8 Casablanca (1942)

� Write a program that prompts the user for a search phrase and
displays any movies that contain that phrase.

This program will allow you to search the
IMDB top 250 movies for a particular word.

search word? kill
Rank Votes Rating Title
40 37815 8.5 To Kill a Mockingbird (1962)
88 89063 8.3 Kill Bill: Vol. 1 (2003)
112 64613 8.2 Kill Bill: Vol. 2 (2004)
128 9149 8.2 Killing, the (1956)
4 matches.

39Copyright 2006 by Pearson Education

Graphical IMDB problem

� Consider making this a graphical program.
Expected appearance:

� top-left tick mark at (20, 20)
� ticks 10px tall, 50px apart
� first red bar t/l corner at (20, 70)
� 100px apart vertically (max of 5)
� 1px tall per 5000 votes
� 50px wide per rating point

40Copyright 2006 by Pearson Education

Mixing graphical, text output
� When solving complex file I/O problems with a mix of
text and graphical output, attack the problem in pieces.

Do the text input/output and file I/O first:

� Display any welcome message and initial console input.

� Open the input file and print some file data.

(Perhaps print the first token of each line, or every token, etc.)

� Search the input file for the proper line record.

Next, begin the graphical output:

� Draw any fixed items that do not depend on the file results.

� Draw the graphical output that depends on the search result.

41Copyright 2006 by Pearson Education

Complex input answer
// Displays IMDB's Top 250 movies that match the use r's search string.
//
import java.awt.*;
import java.io.*;
import java.util.*;

public class Movies2 {
public static void main(String[] args) throws FileN otFoundException {

introduction();
String phrase = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
search(input, phrase);

}

// prints introductory text to the user
public static void introduction() {

System.out.println("This program will allow you to s earch the");
System.out.println("IMDB top 250 movies for a partic ular word.");
System.out.println();

}

// Asks the user for their search phrase and return s it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String phrase = console.next();
phrase = phrase.toLowerCase();
System.out.println();
return phrase;

}

...

42Copyright 2006 by Pearson Education

Complex input answer 2
...

// Breaks apart each line, looking for lines that m atch the search phrase.
public static void search(Scanner input, String phra se) {

System.out.println("Rank\tVotes\tRating\tTitle");
int matches = 0;
Graphics g = createWindow();

while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);

int rank = lineScan.nextInt();
int votes = lineScan.nextInt();
double rating = lineScan.nextDouble();
String title = lineScan.nextLine(); // all the res t

if (title.toLowerCase().indexOf(phrase) >= 0) {
matches++;
System.out.println(rank + "\t" + votes + "\t" + rati ng + title);
drawBar(g, line, matches);

}
}

System.out.println();
System.out.println(matches + " matches.");

}

...

43Copyright 2006 by Pearson Education

Complex input answer 3
...
// Creates a drawing panel and draws all fixed grap hics.
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);
Graphics g = panel.getGraphics();

for (int i = 0; i <= 10; i++) { // draw tick m arks
int x = 20 + i * 50;
g.drawLine(x, 20, x, 30);
g.drawString(i + ".0", x, 20);

}

return g;
}

// Draws one red bar representing a movie's votes a nd ranking.
public static void drawBar(Graphics g, String line, int matches) {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt();
int votes = lineScan.nextInt();
double rating = lineScan.nextDouble();
String title = lineScan.nextLine(); // the rest of the line
int y = 70 + 100 * (matches - 1);
int w = (int) (rating * 50);
int h = votes / 5000;

g.setColor(Color.RED); // draw the red bar for t hat movie
g.fillRect(20, y, w, h);
g.setColor(Color.BLACK);
g.drawString("#" + rank + ": " + title, 20, y);
g.drawString(votes + " votes", 20 + w, y);

}
}

44Copyright 2006 by Pearson Education

Advanced File I/OAdvanced File I/O

reading: 6.4 - 6.5

45Copyright 2006 by Pearson Education

Mixing line-based with tokens
� Don't use both nextLine and the token-based methods
on the same Scanner ; confusing results occur.

23 3.14
Joe "Hello world"

45.2 19

input.nextInt() // 23
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n
^

input.nextDouble() // 3.14
23\t 3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "" (empty!)
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "Joe\t\"Hello world\""
23\t3.14\n Joe\t"Hello world"\n\t\t45.2 19\n

^

46Copyright 2006 by Pearson Education

Line-and-token example
� Another example of the confusing behavior:

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();
System.out.print("Now enter your name: ");
String name = console.nextLine();
System.out.println(name + " is " + age + " years ol d.");

Log of execution (user input underlined):
Enter your age: 12
Now enter your name: Marty Stepp

is 12 years old.

� Why?
� User's overall input: 12\nMarty Stepp
� After nextInt(): 12\nMarty Stepp

^
� After nextLine(): 12\nMarty Stepp

^

47Copyright 2006 by Pearson Education

Prompting for a file name
� We can ask the user to tell us the file to read.

� We should use the nextLine method on the console Scanner ,

because the file name might have spaces in it.

// prompt for the file name
Scanner console = new Scanner(System.in);

System.out.print("Type a file name to use: ");

String filename = console.nextLine();

Scanner input = new Scanner(new File(filename));

� What if the user types a file name that does not exist?

48Copyright 2006 by Pearson Education

Fixing file-not-found issues
� File objects have an exists method we can use:

Scanner console = new Scanner(System.in);
System.out.print("Type a file name to use: ");
String filename = console.nextLine();
File file = new File(filename);

while (!file.exists()) {
System.out.print("File not found! Try again: ");
String filename = console.nextLine();
file = new File(filename);

}
Scanner input = new Scanner(file); // open the fil e

Output:

Type a file name to use: hourz.text
File not found! Try again: h0urz.txt
File not found! Try again: hours.txt

49Copyright 2006 by Pearson Education

Output to files
� PrintStream: An object in the java.io package that

lets you print output to a destination such as a file.

� System.out is also a PrintStream .

� Any methods you have used on System.out
(such as print , println) will work on every PrintStream .

� Printing into an output file, general syntax:
PrintStream <name> =

new PrintStream(new File(" <file name>"));

...

� If the given file does not exist, it is created.

� If the given file already exists, it is overwritten.

50Copyright 2006 by Pearson Education

Printing to files, example
� Example:

PrintStream output = new PrintStream(new File("output .txt"));

output.println("Hello, file!");

output.println("This is a second line of output.");

� You can use similar ideas about prompting for file names here.

� Do not open a file for reading (Scanner) and writing

(PrintStream) at the same time.

� The result can be an empty file (size 0 bytes).

� You could overwrite your input file by accident!

