CSE 142, Autumn 2007

Programming Assignment #8: Critters (20 points)
Due: Thursday, December 6, 2007, 8:00 PM

adapted from Critters assignment by Stuart Reges, with ideas from Sieve Gribble

This assignment will give you practice with class&sirn inBear.java |, Lion.java , Tiger.java
There are several supporting files to downloadhencburse web site. RutterMain.java

Program Behavior:
YOU WI” be prOVided Wlth Several Cla-sses that |ﬂ1lpént a graphical:uCSE142Critter5afari:jackdaw192.168.1.101192.168.1.102192.168.122....‘;J{g?ﬂ
simulation of a 2D world with many animals movingand in it. You will | - - 8w s o
write a set of classes that define the behaviothofe animals. Different ", = I A
kinds of animals move and behave in different wayss you write each| - °, * T
class, you are defining those unique behaviorgedgh animal. e 5w '

, andHusky.java
to start the simulation.

The critter world is divided into cells with integeoordinates. The world i *.

60 cells wide and 50 cells tall. The upper-lefll tas coordinates (0, 0) : - ' el . e " .
X increases to the right and y increases downward. TP Tl
Movement - g

On each round of the simulation, the simulator asdch critter object which™
direction it wants to move. Each round a crittan anove one square north, south, east, west, prastds current
location. The world has a finite size, but it wsaground in all four directions (for example, mayeast from the right
edge brings you back to the left edge).

This program will probably be confusing at firsgdause this is the first time where you do notemiitemain method
(the client code that uses your animals), so yodeds not in control of the overall program'’s ex@m. Instead, you are
defining objects that become part of a larger syst&ou might want to have one of your critters malkeveral moves all
at once using a loop. But you can't do that. dilg way a critter moves is to wait for the simolato ask it for a single
move and return that move. This experience cdnuls&rating, but it is a good introduction objectemted programming.

Fighting

As the simulation runs, animals can collide by mgwonto the same location. When two animals callidey fight. The
winning animal survives and the losing animal ikeki. Each animal chooses to ROAR, POUNCE or SCBATts
opponent. Each of these attacks is strong agaimstother attack (e.g. ROAR beats SCRATCH) and vagkinst
another (ROAR loses to POUNCE). The following ¢éablimmarizes the possible choices and which amnlialin in
each case. To help remember which beats whiclgentiat the starting letters and ratings afah;,_munce,_sratch"
match those of trek, paper, sissors." If the animals make the same choicewiheer is chosen at random.

Critter #2
ROAR POUNCE SCRATCH
ROAR random winner #2 wins #1 wins
Critter #1 | POUNCE #1 wins random winner #2 wins
SCRATCH #2 wins #1 wins random winner

Eating

The simulation world also contains food (represgigthe period character;) for the animals to eat. There are pieces
of food on the world initially, and new food slowfyrows into the world over time. As an animal maveé may
encounter food, in which case the simulator wik gsur animal whether it wants to eat it. Differdinds of animals
have different eating behavior; some always eat,atihers only eat under certain conditions.

Every time one class of animals eats 10 pieceoad,fthat class will be put to "sleep” by the siatoi for a small
amount of time. While asleep, animals cannot mamne, if they enter a fight with another animal ytmell always lose.

Scoring
The simulator keeps a score for each class of anghawn on the right side of the screen. A ctassbre is based on
how many animals of that class are alive, how nfaold they have eaten, and how many other animaishhve killed.

1of4

Provided Files:

Each of the four classes you'll write will impleméime following providedtritter interface:

public interface Critter {
/I methods to be implemented
public boolean eat();
public int fight(String opponent);
public Color getColor();
public int getMove(CritterInfo info);
public String toString();

/I constants for directions

public static final int NORTH = -2;
public static final int SOUTH = 4;
public static final int EAST = 3;
public static final int WEST = 19;
public static final int CENTER = 11;

/I constants for fighting

public static final int ROAR = 28;
public static final int POUNCE = -10;
public static final int SCRATCH = 55;

}

Interfaces are discussed in detail in Chapter theftextbook, but to do this assignment you jugtdn® know a few
simple rules about interfaces. Your class heastersld indicate that they implement this interfaain:

public class Bear inmplenments Critter {

-

The interface is our GUI's way of being sure thairyarious animal classes will implement all of thethods we need.
If you use a header like the above, in order farryande to compile, you must include in each ctadgfinition for each
of the methods in the interfacea(, fight , getColor , getMove , andtoString).

For example, below is a critter class cakkeghe . Stone objects are displayed with the letter S, are gnagolor, always
stay on the current location (returniggNTERfor their move), never eat, and always choose@®#R in a fight. Your
classes will look like the class below, except viighds, a constructor, and more sophisticated tiehaode.

import java.awt.*; // for Color
public class Stone implements Critter {

public boolean eat() {
return false;

public int fight(String opponent) {
return ROAR,;

public Color getColor() {
return Color.GRAY;

public int getMove(CritterInfo info) {
return CENTER;

public String toString() {
return "S";

}
}

Thecritter interface defines five constants for the directiand three constants for the types of fightingu ¥an refer
to these directly in your cod®#@QRTHROAR etc). Your critter can stay on its current lo@aty returningCENTER

Your code should not depend upon the specific wahssigned to these constants, although you maynasthey will
always be of typet . You will lose style points if you fail to usegimamed constants when appropriate.

20f4

Critters to Implement:

The following are the four critter classes you witiplement. Each class must only have one cortstruand that
constructor must accept exactly the parameter@riteed in the table. For random moves, each plesshoice must be
equally likely. You may use eitheirandom object or theviath.random method to obtain pseudorandom values.

Bear

Constructor public Bear(bool ean gri zzly)

color brown (new Color(190, 110, 50)) for a grizzly bear (whegrizzly istrue),
white (Color.WHITE) for a polar bear (when grizzly figse)

eating behavior always returngue

fighting behavior alwaysSCRATCH

movement behavior | alternates betweetORTHANAWESTIN a zigzag pattern
(first NORTHthenwEST thenNORTH thenwEST ...)

toString ‘B

TheBear constructor accepts a parameter representing/pleedf bear it istrue means a grizzly bear, angse means
a polar bear. Yougear object should remember this and use it later whemngetColor is called on th&ear . If the

bear is a grizzly, return a brown colomgav Color(190, 110, 50)), and otherwise a white colatdjor WHITE).
Lion
constructor public Lion()
color red (Color.RED)
eating behavior returnstrue if this Lion has been in a fight since it has last eaten
(if fight has been called on thien at least once since the last calt$o)
fighting behavior if opponent is @ear ("B"), thenROAR otherwisePOUNCE

movement behavior | first gosSouTHS times, then gweSTS times,
then goNORTHb times, then gaASTS times
(a clockwise square pattern), then repeats

toString L

Tiger

constructor public Tiger(int hunger)

color yellow (Color.YELLOW) J

eating behavior returnstrue the firsthunger times it is called, anthise after that - .

fighting behavior if this Tiger is still hungry (if a call teat would returntrue), thensSCRATCH —
otherwisePOUNCE

movement behavior | moves 3 steps in a random direction
(NORTK SOUTHI EAST, Or WES,
then chooses a new random direction and repeats

toString the number of pieces of food thiger still wants to eat, asString

The Tiger constructor accepts a parameter for the maximumbeu of food thisTiger will eat in its lifetime (the
number of times it will returrue from a call toeat). For example, aion constructed with a parameter value of 8 will
returntrue the first 8 timesat is called andalse after that. Assume that the value passeddiager is non-negative.

Thetostring method for ariger should return tha&iger 's remaining hunger; in other words, the numbdmoés that a
call toeat that would returnrue for thatTiger . For example, if aew Tiger(5) IS constructed, initially thatiger 's
toString method should returrs" . After eat has been called on theiger once, calls taoString should returna" |
and so on, until th&ger is no longer hungry, after which all callstéstring should returro" .

Husky
constructor public Husky()
all other behavior you decide

You will decide the behavior of yowusky class.Your constructor must accept no parameters, as shown above.

30f4

Husky Class:

Part of your grade will be based upon writing dreatind non-trivial behavior in yowusky class. The following are
some guidelines and hints about how to write agr@stingHusky .

Each time a critter is asked to move (each Gmelove is called), the critter is passed a parameteyd Critterinfo
that provides useful information; yodnsky may wish to make use of this information to gutdenovement behavior:

public interface CritterInfo {

public int getX();

public int getY();

public int getWidth();

public int getHeight();

public String getNeighbor(int direction);
}

For example, you can find out the critter's curpeand y coordinates by callingtx andgety oninfo . Thegetwidth
andgetHeight methods return information about the size of ihaukation. You can find out what is around theteri

by calling getNeighbor and passing a direction constant as a parameieu will be told the display character for
whatever is next to your animal in that locatighblank space;" means an empty cell. For example, to check whethe
your critter's x-coordinate is greater than 10, wauld write code such as:

if (info.getX() > 10) { 1 check if my x-coordinate is above 10

To check if your neighbor to the west isear , you could write this code in youlusky 's getMove method:
if (info.getNeighbor(WEST).equals("B"){ // check if there's a Bear 1 square west of me

Your Husky 's fighting behavior may want to utilize the paraendo thefight method,opponent , which tells you what
kind of critter you are fighting against (such'&s if you are fighting against @ear).

Your Husky can return any text you like fromstring (besidesnull) and any color frongetColor . Each critter's
getColor andtoString are called on each simulation round, so you cae halusky that displays differently over time.
ThetoString text is also passed to other animals when théy figurHusky ; you may want to try to fool other animals.

On the last day of class, we will host a Crittarrtmment. In each battle, two studentsky classes will be placed into
the simulator along with the other standard animalth 25 of each type. The simulator will run iimo significant
activity occurs or 1000 moves have passed. Thiestuwhoseiusky has the higher score in the right sidebar wins.

No grade points will be based on tournament perdmee. For example,rusky that sits completely still may fare well
in the tournament, but it will not receive full pté because it is too trivial.

Implementation Guidelines:

The provided GUI runs even if you haven't compleitbdhe critter classes. The classes increashiffioulty from Bear
toLion toTiger . We recommend that you writear first. Look atStone.java as an example of the general structure.

Any critter class you write will not compile withbhaving implementations of all methods from thiter interface.
However, if you want to write some of the methods éeave others for later, write a "stub" versidrthe others that
returns a meaningless value (for example, alwaysmeENTERf you don't want to write thBear 's movement code yet).

In the case of each animal, it will be impossildenhiplement the behavior if you don't have the trigflate in your object.
As you start writing each class, spend some tirimkithg about what state will be needed to achiéedesired behavior.

Stylistic Guidelines:

Some of the style points for this assignment welldwarded on the basis of how much energy andiatgatou put into
defining an interestinglusky class. These points allow us to reward the stisdeho spend time writing an interesting
critter definition. YoumMusky 's behavior should not be trivial or closely matteat of an existing animal shown in class.

Style points will also be awarded on your abilibyexpress each critter's operations elegantlgur objects should be
encapsulated. Follow past stylistic guidelines about indentatiavhitespace, identifiers, and localizing variabld’lace
comments at the beginning of each class. Eacls alasuld be in its own file. Document each critdrehavior in
comments at the top of its file and/or at the tbpaxh method. Your critters should not produce@mnsole output.

4 of 4

