
1 of 4

CSE 142, Autumn 2007
Programming Assignment #8: Critters (20 points)

Due: Thursday, December 6, 2007, 8:00 PM

adapted from Critters assignment by Stuart Reges, with ideas from Steve Gribble

This assignment will give you practice with classes. Turn in Bear.java , Lion.java , Tiger.java , and Husky.java .
There are several supporting files to download on the course web site. Run CritterMain.java to start the simulation.

Program Behavior:
You will be provided with several classes that implement a graphical
simulation of a 2D world with many animals moving around in it. You will
write a set of classes that define the behavior of those animals. Different
kinds of animals move and behave in different ways. As you write each
class, you are defining those unique behaviors for each animal.

The critter world is divided into cells with integer coordinates. The world is
60 cells wide and 50 cells tall. The upper-left cell has coordinates (0, 0);
x increases to the right and y increases downward.

Movement
On each round of the simulation, the simulator asks each critter object which
direction it wants to move. Each round a critter can move one square north, south, east, west, or stay at its current
location. The world has a finite size, but it wraps around in all four directions (for example, moving east from the right
edge brings you back to the left edge).

This program will probably be confusing at first, because this is the first time where you do not write the main method
(the client code that uses your animals), so your code is not in control of the overall program's execution. Instead, you are
defining objects that become part of a larger system. You might want to have one of your critters make several moves all
at once using a loop. But you can't do that. The only way a critter moves is to wait for the simulator to ask it for a single
move and return that move. This experience can be frustrating, but it is a good introduction object-oriented programming.

Fighting
As the simulation runs, animals can collide by moving onto the same location. When two animals collide, they fight. The
winning animal survives and the losing animal is killed. Each animal chooses to ROAR, POUNCE or SCRATCH its
opponent. Each of these attacks is strong against one other attack (e.g. ROAR beats SCRATCH) and weak against
another (ROAR loses to POUNCE). The following table summarizes the possible choices and which animal will win in
each case. To help remember which beats which, notice that the starting letters and ratings of "roar, pounce, scratch"
match those of "rock, paper, scissors." If the animals make the same choice, the winner is chosen at random.

 Critter #2
 ROAR POUNCE SCRATCH

ROAR random winner #2 wins #1 wins
POUNCE #1 wins random winner #2 wins Critter #1

SCRATCH #2 wins #1 wins random winner

Eating
The simulation world also contains food (represented by the period character, ".") for the animals to eat. There are pieces
of food on the world initially, and new food slowly grows into the world over time. As an animal moves, it may
encounter food, in which case the simulator will ask your animal whether it wants to eat it. Different kinds of animals
have different eating behavior; some always eat, and others only eat under certain conditions.

Every time one class of animals eats 10 pieces of food, that class will be put to "sleep" by the simulator for a small
amount of time. While asleep, animals cannot move, and if they enter a fight with another animal, they will always lose.

Scoring
The simulator keeps a score for each class of animal, shown on the right side of the screen. A class's score is based on
how many animals of that class are alive, how much food they have eaten, and how many other animals they have killed.

2 of 4

Provided Files:
Each of the four classes you'll write will implement the following provided Critter interface:

public interface Critter {
 // methods to be implemented
 public boolean eat();
 public int fight(String opponent);
 public Color getColor();
 public int getMove(CritterInfo info);
 public String toString();

 // constants for directions
 public static final int NORTH = -2;
 public static final int SOUTH = 4;
 public static final int EAST = 3;
 public static final int WEST = 19;
 public static final int CENTER = 11;

 // constants for fighting
 public static final int ROAR = 28;
 public static final int POUNCE = -10;
 public static final int SCRATCH = 55;
}

Interfaces are discussed in detail in Chapter 9 of the textbook, but to do this assignment you just need to know a few
simple rules about interfaces. Your class headers should indicate that they implement this interface, as in:

public class Bear implements Critter {
 ...
}

The interface is our GUI's way of being sure that your various animal classes will implement all of the methods we need.
If you use a header like the above, in order for your code to compile, you must include in each class a definition for each
of the methods in the interface (eat , fight , getColor , getMove , and toString).

For example, below is a critter class called Stone . Stone objects are displayed with the letter S, are gray in color, always
stay on the current location (returning CENTER for their move), never eat, and always choose to ROAR in a fight. Your
classes will look like the class below, except with fields, a constructor, and more sophisticated behavior code.

import java.awt.*; // for Color

public class Stone implements Critter {
 public boolean eat() {
 return false;
 }

 public int fight(String opponent) {
 return ROAR;
 }

 public Color getColor() {
 return Color.GRAY;
 }

 public int getMove(CritterInfo info) {
 return CENTER;
 }

 public String toString() {
 return "S";
 }
}

The Critter interface defines five constants for the directions and three constants for the types of fighting. You can refer
to these directly in your code (NORTH, ROAR, etc). Your critter can stay on its current location by returning CENTER.

Your code should not depend upon the specific values assigned to these constants, although you may assume they will
always be of type int . You will lose style points if you fail to use the named constants when appropriate.

3 of 4

Critters to Implement:
The following are the four critter classes you will implement. Each class must only have one constructor, and that
constructor must accept exactly the parameter(s) described in the table. For random moves, each possible choice must be
equally likely. You may use either a Random object or the Math.random method to obtain pseudorandom values.

Bear
constructor public Bear(boolean grizzly)

color brown (new Color(190, 110, 50)) for a grizzly bear (when grizzly is true),
white (Color.WHITE) for a polar bear (when grizzly is false)

eating behavior always returns true
fighting behavior always SCRATCH
movement behavior alternates between NORTH and WEST in a zigzag pattern

(first NORTH, then WEST, then NORTH, then WEST, ...)
toString "B"

The Bear constructor accepts a parameter representing the type of bear it is: true means a grizzly bear, and false means
a polar bear. Your Bear object should remember this and use it later whenever getColor is called on the Bear . If the
bear is a grizzly, return a brown color (a new Color(190, 110, 50)), and otherwise a white color (Color.WHITE).

Lion
constructor public Lion()

color red (Color.RED)
eating behavior returns true if this Lion has been in a fight since it has last eaten

(if fight has been called on this Lion at least once since the last call to eat)
fighting behavior if opponent is a Bear ("B"), then ROAR; otherwise POUNCE
movement behavior first go SOUTH 5 times, then go WEST 5 times,

then go NORTH 5 times, then go EAST 5 times
(a clockwise square pattern), then repeats

toString "L"

Tiger
constructor public Tiger(int hunger)

color yellow (Color.YELLOW)
eating behavior returns true the first hunger times it is called, and false after that
fighting behavior if this Tiger is still hungry (if a call to eat would return true), then SCRATCH;

otherwise POUNCE
movement behavior moves 3 steps in a random direction

(NORTH, SOUTH, EAST, or WEST),
then chooses a new random direction and repeats

toString the number of pieces of food this Tiger still wants to eat, as a String

The Tiger constructor accepts a parameter for the maximum number of food this Tiger will eat in its lifetime (the
number of times it will return true from a call to eat). For example, a Lion constructed with a parameter value of 8 will
return true the first 8 times eat is called and false after that. Assume that the value passed for hunger is non-negative.

The toString method for a Tiger should return the Tiger 's remaining hunger; in other words, the number of times that a
call to eat that would return true for that Tiger . For example, if a new Tiger(5) is constructed, initially that Tiger 's
toString method should return "5" . After eat has been called on that Tiger once, calls to toString should return "4" ,
and so on, until the Tiger is no longer hungry, after which all calls to toString should return "0" .

Husky
constructor public Husky()

all other behavior you decide

You will decide the behavior of your Husky class. Your constructor must accept no parameters, as shown above.

4 of 4

Husky Class:
Part of your grade will be based upon writing creative and non-trivial behavior in your Husky class. The following are
some guidelines and hints about how to write an interesting Husky .

Each time a critter is asked to move (each time getMove is called), the critter is passed a parameter of type CritterInfo
that provides useful information; your Husky may wish to make use of this information to guide its movement behavior:

public interface CritterInfo {
 public int getX();
 public int getY();
 public int getWidth();
 public int getHeight();
 public String getNeighbor(int direction);
}

For example, you can find out the critter's current x and y coordinates by calling getX and getY on info . The getWidth
and getHeight methods return information about the size of the simulation. You can find out what is around the critter
by calling getNeighbor and passing a direction constant as a parameter. You will be told the display character for
whatever is next to your animal in that location. A blank space, " " means an empty cell. For example, to check whether
your critter's x-coordinate is greater than 10, you would write code such as:

 if (info.getX() > 10) { // check if my x-coordinate is above 10

To check if your neighbor to the west is a Bear , you could write this code in your Husky 's getMove method:

 if (info.getNeighbor(WEST).equals("B")) { // check if there's a Bear 1 square west of me

Your Husky 's fighting behavior may want to utilize the parameter to the fight method, opponent , which tells you what
kind of critter you are fighting against (such as "B" if you are fighting against a Bear).

Your Husky can return any text you like from toString (besides null) and any color from getColor . Each critter's
getColor and toString are called on each simulation round, so you can have a Husky that displays differently over time.
The toString text is also passed to other animals when they fight your Husky ; you may want to try to fool other animals.

On the last day of class, we will host a Critter tournament. In each battle, two students' Husky classes will be placed into
the simulator along with the other standard animals, with 25 of each type. The simulator will run until no significant
activity occurs or 1000 moves have passed. The student whose Husky has the higher score in the right sidebar wins.

No grade points will be based on tournament performance. For example, a Husky that sits completely still may fare well
in the tournament, but it will not receive full points because it is too trivial.

Implementation Guidelines:
The provided GUI runs even if you haven't completed all the critter classes. The classes increase in difficulty from Bear
to Lion to Tiger . We recommend that you write Bear first. Look at Stone.java as an example of the general structure.

Any critter class you write will not compile without having implementations of all methods from the Critter interface.
However, if you want to write some of the methods and leave others for later, write a "stub" version of the others that
returns a meaningless value (for example, always return CENTER if you don't want to write the Bear 's movement code yet).

In the case of each animal, it will be impossible to implement the behavior if you don't have the right state in your object.
As you start writing each class, spend some time thinking about what state will be needed to achieve the desired behavior.

Stylistic Guidelines:
Some of the style points for this assignment will be awarded on the basis of how much energy and creativity you put into
defining an interesting Husky class. These points allow us to reward the students who spend time writing an interesting
critter definition. Your Husky 's behavior should not be trivial or closely match that of an existing animal shown in class.

Style points will also be awarded on your ability to express each critter's operations elegantly. Your objects should be
encapsulated. Follow past stylistic guidelines about indentation, whitespace, identifiers, and localizing variables. Place
comments at the beginning of each class. Each class should be in its own file. Document each critter's behavior in
comments at the top of its file and/or at the top of each method. Your critters should not produce any console output.

