
CSE142 Wi04 Q-1

3/10/2004 (c) 2001-4, University of Washington Q-1

CSE 142

Sorting

3/10/2004 (c) 2001-4, University of Washington Q-2

Outline for Today
• Review

• Sequential vs Binary Search
• Arrays

• Maintaining an Ordered List
• Sorting

3/10/2004 (c) 2001-4, University of Washington Q-3

Linear vs Binary Search
• Recall work needed to search a list of n items

• Linear search ~ n
• Binary search ~ log n

• For all but small lists, binary search is much, much,
much, much (did we remember to say MUCH?) faster
• For n = 1,000, log n ~ 10
• For n = 1,000,000, log n ~ 20

• But we can only do binary search if the list is sorted
• So how do we sort a list?

3/10/2004 (c) 2001-4, University of Washington Q-4

Design Your Sorting Algorithm Here

CSE142 Wi04 Q-2

3/10/2004 (c) 2001-4, University of Washington Q-5

A Sorted List
• Choices

• Keep list sorted at all times
Need to make adjustments in add method

• Sort list before searching if not done already
Need check in contains (search) method to sort if not currently sorted

• In either case, order of items in list is usually not the
order in which they were added
• But that’s presumably ok, otherwise we’d use the original

unordered list implementation

3/10/2004 (c) 2001-4, University of Washington Q-6

Maintaining a Sorted List
• Almost nothing in the client interface changes

• Except we can no longer allow client to insert arbitrary objects
in the middle of the list – we need to be able to compare them
for order

• What kind of objects can we put in a sorted list?
• Answer: anything that implements the standard library

interface Comparable
/** return <0 if this < obj, return 0 if this.equals(obj), return >0 if this > obj */
public interface Comparable {

public int compareTo(object obj);
}

• Comparable is implemented by many standard classes,
including String

3/10/2004 (c) 2001-4, University of Washington Q-7

Maintaining a Sorted List
• Search now relies on the list being sorted, so it’s crucial

that we record this information in a comment
// instance variables
private Comparable[] items; // Items in this list are stored in
private int numItems; // items[0] through items[numItems-1],

// and the items are sorted so that items[0] <=
// items[1] <= … <= items[numItems-1]

• Given this comment, the implementation should keep the items
sorted at all times, instead of only sorting when needed (if we
wanted to do that we’d need to change the comment to reflect
what we’re doing)
But we’ll also look at how we could sort the entire list when needed

3/10/2004 (c) 2001-4, University of Washington Q-8

Changes to Original List Class
• The code for this class looks almost exactly like the

original unordered list
• One change: parameter and result types change from

Object to Comparable, since only objects that provide
compareTo can be kept in order

/** add the object to the end of the list */
public boolean add(Comparable obj) { … }

CSE142 Wi04 Q-3

3/10/2004 (c) 2001-4, University of Washington Q-9

Method add
• Only method from original list that needs to be changed (True?)

/** Add obj to this list. Return true if successful, otherwise return false */
public boolean add(Comparable obj) {

if (this.numItems == this.items.length) {
return false;

}
// find correct location to place obj
…
// shift larger elements one position to the right
…
// place obj in correct location
…
numItems++;
return true;

}

3/10/2004 (c) 2001-4, University of Washington Q-10

Modified method add
• Picture:

• Implementation details: exercise

3/10/2004 (c) 2001-4, University of Washington Q-11

Selection Sort
• Larger problem: what if we want to sort an unordered

list?
• Idea: At each step, pick smallest element in not-yet-

sorted part of array and move it to the front
• Picture

• Detailed step (repeat until sorted)
• Find smallest item in items[k].. items[numItems-1]
• Swap that item with item in items [k]
• Increase k and repeat

0 k numItems

Items smallest items, sorted larger items, not sorted

3/10/2004 (c) 2001-4, University of Washington Q-12

Code For Selection Sort

CSE142 Wi04 Q-4

3/10/2004 (c) 2001-4, University of Washington Q-13

Code for Finding Minimum Element

3/10/2004 (c) 2001-4, University of Washington Q-14

Test
• Invent some data, check the code

3/10/2004 (c) 2001-4, University of Washington Q-15

Sorting on Demand
• If we didn’t keep the list sorted at all times, the list class

can be changed to sort the list as needed, allowing us to
use binary search in contains
• Add an instance variable to record whether the list is sorted
• In method add, set this variable to false
• In method contain, call the sort method if this variable is false,

then do a binary search after the sort finishes
• In method sort, set the variable to true after sorting

3/10/2004 (c) 2001-4, University of Washington Q-16

Conclusion
• Performance Tradeoffs

• Sorting is relatively expensive
• Pays off if searches are frequent and clustered together

compared to additions to the list
• Can either maintain list in sorted order at all times

(expensive add operation) or sort when needed
(potentially expensive lookup)

• For both algorithms, the diagrams give the key ideas
• The code is relatively straightforward from there

