
CSE142 Wi04 P-1

2/19/2004 (c) 2001-4, University of Washington P-1

CSE 142

Arrays & Implementing List Collections

2/19/2004 (c) 2001-4, University of Washington P-2

Outline for Today
• Quick Review – collection classes: ArrayList
• Arrays – a low-level collection-like data structure
• Using arrays to implement higher-level collection

classes

2/19/2004 (c) 2001-4, University of Washington P-3

What is an ArrayList?
• ArrayList objects are fairly sophisticated

• Contain 0 or more objects
• Can add new objects to the collection – makes room if needed
• Can delete objects from the collection
• Can find objects in the collection
• Can iterate through the collection

• How is this implemented?
• We’ve already gotten some idea from drawing the pictures…

2/19/2004 (c) 2001-4, University of Washington P-4

Arrays
• Java (and many other languages) include arrays as the

most basic kind of collection
• Simple, ordered collections, similar to ArrayLists
• Special syntax for declaring values of array type
• Special syntax for accessing elements by position

• Unlike ArrayLists:
• The size is fixed when the array is created
• No iterator; must use explicit indexes and for/while loops
• Can specify the type of the elements of arrays

CSE142 Wi04 P-2

2/19/2004 (c) 2001-4, University of Washington P-5

Array Example
String[] pets = new String[3];

pets[0] = “Sally”;

pets[1] = “Puff”;

pets[2] = “Spot”;

pets[1] = "Rex";

String allMyPets = "";

for (int i = 0; i < pets.length; i++) {
allMyPets = allMyPets + " " + pets[i];

}

2/19/2004 (c) 2001-4, University of Washington P-6

Array Declaration and Creation
• Array have special type and new expression syntax:

<element type>[] <array name> = new <element type> [<length>];

• With an array, we can precisely specify the element type
• Can be any class or interface type, not just Object
• Can also be a primitive type like int, double, boolean, etc.

• <length> is any integer expression
• Doesn’t need to be a constant
• Value should be greater than 0 (can be 0, but then you get an empty array)

• Elements of newly created arrays initialized to null (zero, false)
• Arrays have an instance variable, length, that stores their length

<array name> . length

2/19/2004 (c) 2001-4, University of Washington P-7

Array Element Access
• Access an array element using the array name and

desired position
<array name> [<position>]

• Details:
• <position> is an integer expression
• Positions count from 0, as with ArrayLists
• Type of result is the element type of the array

(not necessarily Object)

• Can update an array element by assigning to it
<array name> [<position>] = <new element value> ;

• Like ArrayList's set method

2/19/2004 (c) 2001-4, University of Washington P-8

Implementing Containers
• Example: Implement a simple version of ArrayList to illustrate

what’s going on underneath
• Specification:

class SimpleList { // a list of objects
SimpleList(int capacity); // create new SimpleList with given capacity

int size(); // return # of Objects in this SimpleList
boolean add(Object obj); // add obj to this SimpleList, result true if success

boolean contains(Object obj); // return whether this SimpleList contains obj
void clear(); // remove all objects from this SimpleList

Object get(int pos); // return Object at given position
Object set(int pos, Object newObj); // update Object at given position, and

// return previous Object at that position

}

• For simplicity, we’ll use a fixed maximum capacity.

CSE142 Wi04 P-3

2/19/2004 (c) 2001-4, University of Washington P-9

SimpleList Representation
• Underlying representation is an array of objects
• Need a separate variable to keep track of how many objects have

actually been added to the collection so far (Why?)
/** A collection of Objects */
public class SimpleList {

// instance variables:
private Object[] objects; // Objects in this SimpleList are stored in

private int numObjects; // objects[0] through objects[numObjects-1]
…

}

• Array length gives the capacity of the SimpleList container; numObjects is
the container’s current size

• Class invariant relates instance variables – essential comment

2/19/2004 (c) 2001-4, University of Washington P-10

SimpleList Constructor
• Need to allocate the actual array and initialize the SimpleList to

“empty”
public class SimpleList { // a list of objects

private Object[] objects; // Objects in this SimpleList are stored in
private int numObjects; // objects[0] through objects[numObjects-1]

/** Construct new empty SimpleList with given maximum capacity */
public SimpleList(int capacity) {

}

}

2/19/2004 (c) 2001-4, University of Washington P-11

add
/** Add obj to this SimpleList if there is room. Return true if added successfully,
* otherwise return false. */

public boolean add(Object obj) {

}

2/19/2004 (c) 2001-4, University of Washington P-12

size
/** Return number of elements currently in this SimpleList */
public int size() {

}

CSE142 Wi04 P-4

2/19/2004 (c) 2001-4, University of Washington P-13

contains
/** Return whether this SimpleList contains obj (testing using equals) */
public boolean contains(Object obj) {

}

2/19/2004 (c) 2001-4, University of Washington P-14

get
/** Return the object at position pos in this SimpleList, or null if pos is out of bounds */
public Object get(int pos) {

}

2/19/2004 (c) 2001-4, University of Washington P-15

set
/** update Object at given position to be newStr, and return previous Object at that
* position, or return null if pos is out of bounds */
public Object set(int pos, Object newStr) {

}

2/19/2004 (c) 2001-4, University of Washington P-16

clear
/** Remove all objects from this SimpleList */
public boolean clear() {

}

CSE142 Wi04 P-5

2/19/2004 (c) 2001-4, University of Washington P-17

Challenges
• Remove and insert operations

// Remove and return object at given position (shifting all later objects up)

Object remove(int pos) { … }

// Insert the given object at the given position (shifting all later objects down)

void add(int pos, Object obj) { … }

• Requires shifting elements after pos up or down one position

• Remove the maximum capacity limitation
• When out of space, allocate a bigger array, copy the current

elements over, then replace the old array with the bigger array

2/19/2004 (c) 2001-4, University of Washington P-18

Array Summary
• Arrays are the fundamental low-level collection type

built in to the Java language
• Also found in essentially all interesting programming

languages

• Size fixed when created
• Indexed access to elements
• Often used to implement higher-level, richer container

types
• More convenient, less error-prone, closer to what users

normally want

