
CSE142 Wi04 M-1

2/9/2004 (c) 2001-4, University of Washington M-1

CSE 142

Iterators

2/9/2004 (c) 2001-4, University of Washington M-2

Outline for Today
• Quick Review

• ArrayList collections; add, size, get, etc. methods
• Iteration and while loops

• Today
• Iterating through collections
• Iterator objects

2/9/2004 (c) 2001-4, University of Washington M-3

Using Collections
• We can create ArrayLists, and put things into them.

ArrayList names = new ArrayList();
names.add("Bob");
names.add("Sue");
names.add("Jeremiah");

• We can pick out elements at particular index positions.
String someNames = names.get(0) + " and " + names.get(1);

• But how can we do something for all names?
• Print out all names in the list.
• Find the first name, alphabetically.
• Find what the longest name.
• See if a given name is in the list.

2/9/2004 (c) 2001-4, University of Washington M-4

Iterating Through Collections
• What we really want is to be able to write:

For all elements in the list,

Do something.

• This will be a loop, since we want to repeat the "do
something" for each element in the list.

• For some collections, like lists, we could access the
elements by position (e.g., get(i))

• More general – use an “iterator” object associated with
the collection
• Generalizes to other collections like set that are not ordered

CSE142 Wi04 M-2

2/9/2004 (c) 2001-4, University of Washington M-5

Iterators
• To get "all elements in the list", we can use an iterator

object
• Iterators

• Know about the collection they are processing
• Keep track of where they are in the collection

• Strategy
• Ask the array list for an associated iterator object
• Ask the iterator object for each element, in turn, in a while loop

• We don't have to count or even know how many
elements are in the list!

2/9/2004 (c) 2001-4, University of Washington M-6

Iterator Operations
• Getting an iterator object from an ArrayList (and other

kinds of Java collections):
Iterator iter = names.iterator();

• Here are the basic methods provided an Iterator:

// Return true if the iteration has more elements.
public boolean hasNext()

// Return the next element in the iteration.
public Object next()

• Note that we’ll usually want (need) to cast the result of next() to
a more specific kind of object

2/9/2004 (c) 2001-4, University of Washington M-7

Using an Iterator, in English
• General algorithm:

Get the iterator for the collection [names.iterator()]

While the iterator has at least one more element [iter.hasNext()]

Get the next element [iter.next()]

Do something using the element
Then go back to the top

Otherwise, we're done

2/9/2004 (c) 2001-4, University of Washington M-8

Using an Iterator, in Java
ArrayList names = …;

System.out.println("The names are as follows:");

Iterator iter = names.iterator();
while (iter.hasNext()) {

String name = (String) iter.next();
System.out.println(name);

}

// done

•Footnote: While an iteration is in progress, you can’t add or delete items from
the list (with some exceptions, which you can look up in the docs)

CSE142 Wi04 M-3

2/9/2004 (c) 2001-4, University of Washington M-9

Relationships Between Objects

2/9/2004 (c) 2001-4, University of Washington M-10

Another Example: Finding the Longest Name
• Suppose we want to find the longest name. How would

we do it?
• Recall: "Bob".length() == 3

• What's the algorithm in English?
• What's the Java code?

2/9/2004 (c) 2001-4, University of Washington M-11

Solution

2/9/2004 (c) 2001-4, University of Washington M-12

Iterators vs Indexed Access
• We can also process an ArrayList and some other kinds of

collections using get(index)
for (int k = 0; k < names.size(); k++) {

process names.get(k);
}

• Tradeoffs
• Iterators are more general – work on all collections, even if the collection

doesn’t support indexed access (i.e., using get(k) to access elements
directly), however

• Iterators only support traversal of a collection from beginning to end – if we
want to go backwards or in some other order, we need indexed access (and
a container that supports it)

• General rule: use iterators (the more general solution) normally;
use other traversals when iterators don’t do what you need

