
CSE142 Wi04 E-1

1/13/2004 (c) 2001-4, University of Washington E-1

CSE 142

Classes and Objects in Java

1/13/2004 (c) 2001-4, University of Washington E-2

Outline for Today
• Review of objects and classes
• Husky Card class design
• Class definitions in Java
• Specifications and Implementations
• Specifying methods in Java

1/13/2004 (c) 2001-4, University of Washington E-3

Objects Reviewed
• Objects have properties and responsibilities
• Properties

• Sets of values
• Have a specific type (simple or reference to an object type)
• The current collection of property values is the object’s state

• Responsibilities
• The collection of messages the object understands – what it

can do
• Queries and commands

1/13/2004 (c) 2001-4, University of Washington E-4

Classes Reviewed
• A collection of similar objects is called a class

• All objects in the class have the same properties and
responsibilities

• Every object is an instance of some class
• The basic unit of programming in Java is a class

definition
• Specifies properties and responsibilities of instances
• Individual objects are created as needed

• Each class defines a new type
• Object properties can be references to other objects

CSE142 Wi04 E-2

1/13/2004 (c) 2001-4, University of Washington E-5

Exercise

• Design a class to represent a virtual Husky Card (as
might be used in a simulation)
• What are the properties?
• What are the responsibilities?

Commands?

Queries

1/13/2004 (c) 2001-4, University of Washington E-6

Husky Card Design (1)

• Properties (name, type, sample values)

1/13/2004 (c) 2001-4, University of Washington E-7

Husky Card Design (2)

• Responsibilities (commands/queries)

1/13/2004 (c) 2001-4, University of Washington E-8

Translating this to Java

• Class definition
/** Representation of a virtual Husky Card */
public class HuskyCard {

…
}

• Defines a class and gives it a name
• Between the braces { … } we give details of

• Instance variables: the properties of the object
• Methods: sequences of Java code that carry out the object’s responsibilities

(commands and queries)
(In other programming languages these are sometimes called functions, procedures, or
subroutines)

• (Aside: the book uses “package” statements at the beginning of class definitions. It’s
not needed in small programs, so we won’t use it.)

CSE142 Wi04 E-3

1/13/2004 (c) 2001-4, University of Washington E-9

Identifiers – Names of Things

• In the class definition
public class HuskyCard { … }

HuskyCard is the name of the class
• Names in Java are called identifiers

• Combination of letters, digits, underscores (_) starting with a
letter ($ is also allowed, but best to avoid)

• Must start with a letter
• Case sensitive (abc, Abc, ABC are all different)
• Details in the book

• You can not use a keyword or reserved word that has a
special meaning in Java as an ordinary identifier

class, public, if, for, int, double, boolean, …

1/13/2004 (c) 2001-4, University of Washington E-10

Choosing Names
• Picking good names is an essential part of programming
• General rule of thumb: for names that describe classes (types),

queries, and properties, use noun phrase that describes
instances of the class or the property

accountNumber, totalSales, quantityInStock, getBalance
• Avoid cryptic, cute, or vague names

“value” or “count” contains no useful information

• For methods, use verb phrase that describes action performed
setBalance, deposit, withdraw, changeDate

• Capitalization – Java convention
• Instance variables and methods begin with lower case letter
• Class names capitalized
• Capitalize inner words of compoundNames and CompoundClasseNames

• A class named Foo should be in a file named Foo.java

1/13/2004 (c) 2001-4, University of Washington E-11

Comments

• Used to help the human reader; otherwise ignored
• Essential to record information needed to understand the

program that is not reflected directly in the code (design
decisions, strategies, etc.)

• Kinds
// the rest of the line following “//” is a comment
/* everything after “/*” is a comment until reaching this: */
/** special comment form for documentation (“doc comments”) */

• JavaDoc tool turns the /** doc comments */ into
formatted documentation web pages

• Good commenting is an art
• Need to include essential information, but don’t overdo it

1/13/2004 (c) 2001-4, University of Washington E-12

Specification vs Implementation

• Specification – view of the class as seen by client code
that uses instances of the class
• Often called the interface of the class (The word “interface”

also has a particular technical meaning in Java, which we will
get to eventually – for now we will use it informally)

• Implementation – internal details
• Client should not know anything about this

• Some specifications in real life
• Automobile “user interface” – steering wheel, pedals, etc.
• Electric power outlet

CSE142 Wi04 E-4

1/13/2004 (c) 2001-4, University of Washington E-13

Specifying a HuskyCard

• Class: HuskyCard
• Queries

• getName
• getID
• getBalance

• Commands
• setName
• deposit
• withdraw

• Special “command”: constructor – initialize new
HuskyCard instance when it is created

1/13/2004 (c) 2001-4, University of Washington E-14

HuskyCard Specification in Java

• In Java, the specification and implementation are given
in a single file

• To create a class we start by writing the specification
parts of methods (i.e., the operations available to client
code)

• After specifying, we’ll fill in the implementation details
(next lecture)

1/13/2004 (c) 2001-4, University of Washington E-15

Specifying Methods for Queries

• Example
/** Return the current balance in this HuskyCard

* @return the current balance in pennies. */

public int getBalance() { … }

• “public” – defines this as part of the public specification
• “int” (or double, boolean, Color, HuskyCard, etc.) – defines the

type of the value returned by this query
• “getBalance” – the name of the method; when a getBalance

message is sent to a HuskyCard object, this method will be
used to carry out that responsibility

1/13/2004 (c) 2001-4, University of Washington E-16

Specifying Methods for Commands

• Example
/** Subtract the given amount from this HuskyCard

* @param amount the amount to withdraw in pennies */

public void withdraw(int amount) { … }

• “public” – same as for a query; this is part of the specification
• “void” – special keyword to identify this as a command that

does not return a value
• “withdraw” – the name of the method
• “int amount” is a parameter, a piece of information supplied

when the object is given this command
Like the 5 in a “clap 5” message sent to an Performer

CSE142 Wi04 E-5

1/13/2004 (c) 2001-4, University of Washington E-17

Constructors

• Example
/** Construct a new HuskyCard with an initial balance of 0

* @param studentName the student’s name

* @param IDNumber the student’s ID Number */

public HuskyCard(String studentName, int IDNumber) { … }

• Like a command, but no “void” keyword
• Every time a new HuskyCard instance is created, the

constructor is run
• Normally used to initialize the new object’s state to some

sensible value

1/13/2004 (c) 2001-4, University of Washington E-18

Summary

• Class Definitions are the unit of programming in Java
• Individual objects are created as instances of these classes

• Specification vs Implementation
• What is publicly available to client code vs what is private

information hidden inside the class

• Specifications for class methods
• Queries
• Commands
• Constructors – a specialized kind of command

