
CSE 142 Wi04 Midterm 2 Version A Page 1 of 8

Question 1. (6 points) Complete the definition of method printTriangle(n) below so that
when it is executed it will print on System.out an upside down triangle of n rows, with n ”+”
characters in the first row, n-1 in the second, and so forth, finishing with one ”+” character in the
last row.

For example, execution of printTriangle(4) should print the following pattern

 ++++
 +++
 ++
 +

 /**
 * Print an upside down triangle made up of + characters
 * @param n the number of rows to print and the number of +
 * characters to print in the first row
 */
 public void printTriangle(int n) {

 }

CSE 142 Wi04 Midterm 2 Version A Page 2 of 8

Question 2. (2 points) In Java we can define interfaces as well as classes. Here is an example
of an interface definition.

 /** Simple interface for test question */
 public interface I {
 public void one(int n, double x);
 public String two();
 }

What is required when a simple class C implements interface I? Circle the number of the correct
answer.

(i) C must implement all of the methods declared in I and no others.

(ii) C must implement some, but not necessarily all, of the methods declared in I and no others.

(iii) C must implement all of the methods declared in I and may also contain additional methods
not declared in I

(iv) C must implement some, but not necessarily all, of the methods declared in I and may also
contain additional methods not declared in I

(v) None of the above are correct

Question 3. (3 points) Consider the following short class definition.

public class Planet {
 private int orbit;
 public Planet(int index) {
 orbit = index;
 }
 public static void main(String[] arg) {
 Planet rock = new Planet(3);
 System.out.println(rock.getOrbit());
 }
 public int getOrbit() {
 return orbit;
 }
}

(a) How many instance variables are defined in class Planet?

(b) How many methods (not constructors) are defined in class Planet?

(c) If you type "java Planet" in the DrJava interactions pane after compiling this class
definition, which one of the following choices is printed out? Circle the correct number.

(i) Error: No 'main' method in 'Planet'
(ii) 3
(iii) Planet@15718f2
(iv) java.lang.NullPointerException:
 at Planet.main(Planet.java:8)

CSE 142 Wi04 Midterm 2 Version A Page 3 of 8

Question 4. (5 points) Consider the following code, stored appropriately in the files Lens.java,
Camera.java, and Builder.java and compiled into the associated class files.

public class Lens {
 private int focalLength;
 public Lens(int length) {
 focalLength = length;
 }
}

public class Camera {
 private Lens optics;
 public Camera(Lens opt) {
 optics = opt;
 }
}

public class Builder {
 public static void main(String[] arg) {
 Lens optic = new Lens(30);
 Camera snapper = new Camera(optic);
 // draw the objects that exist at this point
 }
}

When the main() method of class Builder runs, it creates a Lens object and a Camera object.
Draw a simple schematic picture (object diagram) as we have done in lecture that correctly
shows the relationship between the local variables in method main, the Camera object, and the
Lens object when the program is just about to exit the main() method. In the diagram of each
of the objects, you should reserve and label a space for each instance variable. Fill in the correct
value for a primitive type. Draw a line from a variable to an object to indicate a reference.

CSE 142 Wi04 Midterm 2 Version A Page 4 of 8

The next two questions refer to the following class, which represents a single item in an online
store’s shopping cart. You can remove this page from the test to save page-flipping while
answering the following questions, however you must hand in this page with your test to
receive credit for the following questions.

 /** Representation of one item in the store inventory */
 public class Item {
 private String name; // item name
 private int catalogNumber; // number of part in catalog
 private int quantity; // how many of this item we have
 // (must always be >= 0)
 private double weight; // weight in ounces (must be > 0)
 private int price; // price of one item in US pennies

 /** Construct a new Item object ... */
 public Item(String partName, int idNumber, double partWeight,
 int howMany, int partPrice) {
 name = partName;
 catalogNumber = idNumber;
 quantity= howMany;
 weight = partWeight;
 price = partPrice;
 }

 // methods to get Item properties (comments omitted to save space
 public String getName() { return name; }
 public int getNumber() { return catalogNumber; }
 public int getQuantity() { return quantity; }
 public double getWeight() { return weight; }
 public int getPrice() { return price; }

 /** Add more of this item to the inventory
 * @param howMany number of items to add, must be > 0 */
 public void addItems(int howMany) {
 quantity= quantity + howMany;
 }

 /** Remove copies of this item from the inventory
 * @param howMany number of items to remove. Must be > 0
 * and less than or equal to numberInStock */
 public void removeItems(int howMany) {
 quantity = quantity – howMany;
 }
 }

CSE 142 Wi04 Midterm 2 Version A Page 5 of 8

Question 5. (4 points) Choose the words or phrases from the following list that best complete
the sentences below. Some of the sentences refer to the Item class defined on the previous page,
others refer to general properties of software.

assignment, boolean, class, class definition, class invariant, client, cohesion,
constructor, coupling, declaration, expression, instance variable, instance, local
variable, loop, message, method, name thingy, parameter, precondition,
postcondition, return statement, scratch space, state, this, type, void

In the definition of class Item, the comment next to the declaration of instance variable

quantity that says “must always be >= 0” is an example of a (an) ____________________ .

The statement “must be > 0” in the comment above method addItems is an example of a

method ____________________________ . In general, when we design software, we want to

ensure that each class does only one thing well; to do this we maximize the

____________________ of the class. To reduce the possibility that changes in one class will

introduce errors in other classes, we try to reduce the _______________________ between

classes.

CSE 142 Wi04 Midterm 2 Version A Page 6 of 8

Question 6. (8 points) As part of our online store software, we want to have a class
ShoppingCart to represent the items that the customer has currently selected to purchase.
That class contains an instance variable items that is a list of items the customer has selected.
Complete the implementation of method getTotalPrice, below, so it returns the total price of
all the items currently in the shopping cart. For full credit, you must use an iterator to access
the Item objects in the items list.

 /** representation of a shopping cart */
 public class ShoppingCart {

 // instance variables
 private ArrayList items; // items in the shopping cart

 /** Construct a new ShoppingCart */
 public ShoppingCart() {
 items = new ArrayList();
 }

 // methods to add and remove Items from the ShoppingCart
 // omitted to save space

 /** Compute the current cost of the ShoppingCart
 * @return total price of all items in the shopping cart */
 public int getTotalPrice() {

 }

 }

CSE 142 Wi04 Midterm 2 Version A Page 7 of 8

Question 7. (12 points) The UW Athletic Department needs to organize a database of the
different sports offered during the year, but they are a little overworked right now, so they have
asked you for help. Each individual sport is represented by a Sport object, which contains two
strings holding the name of the sport, like “football”, and the season in which it is offered, either
“fall”, “winter”, “spring”, or “summer”.

(a) Complete the definition of the Sport constructor so it properly initializes new Sport
objects. You may not change any of the variable names or other code below.

 /** Representation of one sport */
 public class Sport {
 // instance variables
 private String sport; // name of the sport
 private String season; // season offered: “fall”, “winter”, …

 /** Initialize a new Sport object
 * @param sport name of the sport
 * @param season season in which it is offered */
 public Sport(String sport, String season) {

 }

 /** Return the name of this sport */
 public String getSport() {
 return sport;
 }

 /** Return the season this sport is offered */
 public string getSeason() {
 return season;
 }

 }

CSE 142 Wi04 Midterm 2 Version A Page 8 of 8

(b) Class SportList is a collection describing all of the sports offered during the year.
Complete the definition of method getSportsOfferedDuring below so it returns a new
SportList containing all of the Sport objects in the original list describing sports offered
during the requested season. For full credit you must use an iterator to process the original
list.

 /** A collection of sports */
 public class SportList {
 // instance variable
 private ArrayList sports; // list of Sport objects in
 // this SportList collection
 /** Construct a new, initially empty, SportList */
 public SportList() {
 sports = new ArrayList();
 }
 /** Add a new Sport to the SportList
 * @param sport the new Sport object to add to the list */
 public void add(Sport sport) {
 sports.add(sport);
 }

 /** Return a list of all the sports offered in a season
 * @param season the season to be selected
 * @return a list of all sports in this SportList offered
 * during the requested season
 */
 public SportList getSportsOfferedDuring(String season) {

 }
}

