Jessan Hutchison-Quillian

February 10, 2003

CSE 142 – Quiz Section BK

Project One Report

In this project we designed an application that would place sets of tiles into several different patterns. The goal of this application is to allow customers of an interior design company to view what their floor would look like with tile arranged in a certain pattern before they purchase it. Essentially, the program takes instructions about how to color the tiles and which patterns of what size to use and then creates a virtual floor, modeling a customer’s floor at home.
System Use

Creating objects of the two main classes of this application is fairly simple, using the interactions window of Dr Java. First, one should create one or more instances of the tile class. Generally it is best to make these in pairs with equal sizes because that will make using the pattern class’s methods easier.

To create an object of the tile class, one has three options: a default tile (img1), a colored tile with no design (img2), and a colored tile with design (img3). The default simply creates a solid black tile with a given size; to create this type of Tile object just make a new instance of the Tile class with only one integer parameter (Tile tileTest = new Tile(int parameter)). This integer parameter will define the size of the Tile object. This is true for the three different tile constructors. For the second type of tile of a given size and color, the only difference is that an extra parameter of type color must be provided as well in order to determine the color of the tile (Tile tileTest = new Tile(int parameter,java.awt.Color.colorParameter)). Calling the Tile constructor with three parameters creates the third and final type of tile: an integer followed by two colors. The integer and the first color determine the same things as they did before, but the third parameter determines the color of the design within the tile.

Once there is an instance of the Tile class, a Pattern object can be made. The Pattern class, unlike the Tile class we just dealt with, has only one constructor, which takes three parameters: two integers and a Tile object. The first of the integers determines how many rows of tiles there will be; the second is how many columns of tiles there will be. Finally, the given Tile object’s size variable will be the size of the “tile slots” of the pattern, so all tiles one uses with the pattern must have a size equal to the size of the tile given with the creation of the pattern.

The key methods for this application are the Pattern class’s set of display methods; the tile class really has no methods that the user needs to interact with. Each of these display methods is of the type void and takes either one tile or two tiles as parameters. There are 7 display methods in total: displayAllSame, displayHorizontal, displayVertical, displayChecker, displayBordered, displaySingle and displayHalf. The first method is the most simple. It simply takes one tile; there are no requirements other than that the size of that tile must equal the size variable of the Tile object given to the Pattern upon construction. The rest of the methods, other than displayHalf, must be given two tiles (or two of the same tile), but otherwise they work the same as the previous method. The final method, displayHalf, has one additional requirement, that the pattern have an even number of rows, but still requires two tiles. (See table 1 to see what the output of each of these methods is)

Process

The first step for us in creating this application was to understand what was desired of it. Thus, we began by reading through the instructions given and the specifications of the starter code. From this we were able to figure out what methods must be added and/or altered in order to fulfill all the requirements of the application.

First, for simplicity we created only the constructors of the Tile class and made the addTo method functional with a simple solid color Tile. After that we implemented the displayAllSame method for the Pattern class. Once we tested these to make sure they worked well, then we added a shape (an oval) within our tile. Adding this oval within our tile required some revision of our third constructor (making it take a second color rather than a boolean deciding whether it’s filled or not). Also we had to revise both the addTo method and the display method of the tile class so that it would create and move the oval along with the tile/rectangle. Once all these methods were completed, it was fairly easy to create our various pattern display methods; we simply used methods similar to our already implemented displayAllSame but with some conditional statements to allow for more interesting patterns.

One problem we ran into with these pattern display methods was that our code was originally very hard to read. This problem resulted from a very poor choice of names for the counting variables we used in the for loops. We used 'm' and 'n' as our counting variables instead of 'col' and 'row' which resulted in very difficult to read code. Once we remedied this, it was very easy to make sense of what was going on within these loops and thus how to design them for the more complex patterns. Another issue was with the Pattern constructor. After some preliminary testing, we noticed that Patterns of very small size were not displaying properly, so after some targeted tests we were able to figure out that the GWindow has a minimum width. Once we determined the minimum width, it was easy to put in a while loop with a conditional expression that would only run if the window was smaller than the minimum width.

Although there were a couple of problems, overall, working with a partner was an interesting experience. One difficulty was finding times that worked for both of us; other than that the process was rather smooth. We ended up working after quiz section (3:30, Thursday) and at 2:30 on Friday, both times in the IPL. Both my partner and I had a little experience in programming before, though I seemed to have had more. One problem was switching off between driver/navigator. It was kind of hard for me to coax him into taking the keyboard, though it was probably equally hard for me to give it up. However, because I had to explain each piece of the code’s function, I finished with a greater understanding of what the program was really doing.

System Description

The application consists of two classes: Tile and Pattern. Each of these has its own unique purpose, and therefore its own properties and responsibilities. The Tile class had four properties: the size, the color of the tile, the color of the design and a value representing whether the tile is filled or not. Each tile must know its size, add a tile to a GWindow and be able to move that tile. The pattern class, however, is more complex. It requires six properties: the size of each tile “slot,” the height of the floor, the width of the floor, the number of rows, the number of columns and it must have a reference to a GWindow object representing the floor. Its responsibilities are also more numerous than the Tile class. It must know its tile size and its GWindow. Furthermore, it must be able to initialize the floor with a grid; it must be able to add a single tile to the top left hand corner. Finally it needs to display tiles in the patterns shown in Table 1.

In order to fulfill these responsibilities in ways that would be satisfactory to a client, some alterations to the starter code had to be made. The first change was in the Pattern constructor method. Instead of having a tile size of 100 for every pattern, we had the constructor take a Tile object as a parameter; the constructer then used the getSize method of that tile to determine what the tile size of the pattern would be. This allows for much more flexible pattern design. Furthermore, we had to alter the display method of the Tile class a little bit, so that we could accommodate moving our oval design as well as the rectangular tile. To do this we basically copied the method used for moving the rectangle, but did it to the circle as well. Overall, not many changes to the starter code were necessary.

Some of the methods needed to carry out the responsibilities of these two classes required a little bit of ingenuity. With all of the display methods requiring two Tile objects as parameters, there was trouble if tiles had sizes different than the size of the tile “slot” of the pattern. So in order to ensure that the patterns would appear correctly, we put in an if statement to check for equality of the sizes. The loops for moving forward columns and down rows were actually pretty simple and are documented well enough by comments that they require no explanation. And the conditionals required to display the patterns properly are fairly straightforward logic. Take the displayBordered method (please first look at the output of this method in Table 1, so that the code will be understandable):

//Checks whether the current tile is in //the first or last row

 //If it is then t1 will be displayed

 if (row == rowcnt || row == 1){

 t1.addTo(floor, row, col);

 }else{

 //Checks whether the current tile is //in the first or last column

 //If it is t1 will be displayed, if //not t2 will be displayed

 if(col == 1 || col == colcnt){

 t1.addTo(floor,row,col);

 }else{

 t2.addTo(floor,row,col);

 }

It first tests if the row is the first or the last; if so it displays the first type of tile. If that condition is not fulfilled, then it moves on to the else case. Within this there is another if statement determining if the current tile is in the first or last row; if so then it also prints out the first tile. If neither of these conditions was fulfilled, then the current tile would be in the middle of the pattern, and thus the second type of tile would be displayed. As you can see, the code is well explained through the comments, so it’s unnecessary to go into great detail about each algorithm.

.

Testing and Evaluation

The only way we evaluated our code testing if it worked as intended, since we didn’t have a client telling us exactly what he or she wanted from this application. Because of this, we tried to adhere as closely to the instructions as possible, for they represent the closest thing we have to a client’s desires. Furthermore, our design, through rigorously adhering to the instructions, resulted in fairly reasonable properties and responsibilities. In this spirit, we generally chose accuracy over flexibility. For example, we didn’t allow the displayHalf method to be executed without an even number of tiles. Though it would display somewhat properly, it would not display as specified, with exactly one half of the floor containing one type of tile, and the other half containing another (assuming the tiles provided were, in fact, different tiles). We always took this more “defensive” approach to our methods so that we could be sure our output would look the same for nearly every case.

Testing, overall, was fairly straightforward. In order to make testing of constructors, we implemented (though we did not specify it, because it should not have a use outside of testing the code) a toString (see TestCode 1) method for the Pattern class, so that we could be sure each variable was getting its proper value. Once this was implemented, we began to test for functionality. To ensure our code worked for as many situations as possible, we attempted to cover a broad range of cases for each constructor and each display of the methods, because these were the keys to the application as a whole functioning properly. To do this effectively, we prepared a set of patterns and tiles (TestCode 2) that would allow us to test for many cases without ridiculous amounts of work. With this set of Tile and Pattern objects (and a few extras to ensure the constructor was rigorously tested, seeing as this is perhaps the most important method) and the toString method, we tested the Pattern constructor (TestCode 3). Finally we tested the display methods with the set of objects shown in TestCode 2 (see TestCode 4 for an example).

In this stage of testing we found no errors (other than ones that would be expected to happen, given the specification of the methods), partly because of how clear our code is. Because we went through and explained each piece of the code with thorough comments, really understood how the program worked and were able to detect many potential bugs and eliminate them before they occurred. Also, because the code is well formatted and makes use of many comments, it is very readable. The readability really resulted from this being a partner project, because we discussed each method before we wrote it, and that conversation naturally turned into explanatory comments.

Conclusion

This project, though it was not overly difficult, was a very good introduction to several things. It was certainly my first occasion to do pair programming, which in fact turned out to be a very interesting experience. Talking about each part of the code resulted in a greater understanding of the code and code that worked well. Furthermore, this project provided a good introduction to the CSE graphics library, and to java documentation as a whole. I most certainly feel more comfortable browsing through it now than I did prior to starting this project. It also helped me get reacquainted (I’ve had a little experience with C++) with how to make effective loops. In sum, it was helpful for developing and strengthening several skills.

Illustrations & Tables

Table 1:

	Pattern Method
	Output (W= tile1, B = tile2)

	displayHorizontal(tile1,tile2)
	W W W W W W

B B B B B B

W W W W W W

B B B B B B

	displayVertical(tile1,tile2)
	W B W B W B

W B W B W B

W B W B W B

W B W B W B

	displayChecker(tile1,tile2)
	W B W B W B

 B W B W B W

W B W B W B

 B W B W B W

	displayBordered(tile1,tile2)
	W W W W W W

W B B B B W

W B B B B W

W W W W W W

	displaySingle(tile1,tile2)
	W W W W W W

W W W W W W

W W W W W W

B B B B B B

	displayHalf(tile1,tile2)
	W W W B B B

W W W B B B

W W W B B B

W W W B B B

	displayAllSame(tile1)
	W W W W W W

W W W W W W

W W W W W W

W W W W W W

Img 1:
[image: image1.png]

 Example of what a default tile with size 50

Img 2:
[image: image2.png]

 Example of a tile created with a size of 50 and a color of java.awt.Color.blue.
Img 3:
[image: image3.png]

 This is an example of what a tile created with the following values would look like: 50, java.awt.Color.yellow, java.awt.Color.black.

TestCode 1:

 public String toString (){

 String objectState = "Size of tile is: " + tileSize +", colcnt " +colcnt+

 ", rowcut: "+rowcnt+", width : "+width+",height: "+height;

 return objectState;

 }

TestCode2:

Tile tile = new Tile(50, java.awt.Color.yellow, java.awt.Color.black);

Tile tile1 = new Tile(50, java.awt.Color.blue);

Tile tile2 = new Tile(4, java.awt.Color.green, java.awt.Color.black);

Tile tile3 = new Tile(4, java.awt.Color.blue);

Tile tile4 = new Tile(400, java.awt.Color.yellow);

Tile tile5 = new Tile(400, java.awt.Color.green,java.awt.Color.blue);

Tile tile6 = new Tile(19, java.awt.Color.green, java.awt.Color.black);

Tile tile7 = new Tile(33, java.awt.Color.blue,java.awt.Color.green);

Pattern pattern = new Pattern (12,12,tile);

Pattern pattern1 = new Pattern(350, 25, tile2);

Pattern pattern2 = new Pattern(1,3, tile4);

Pattern pattern3 = new Pattern(14, 14, tile6);

TestCode 3:

pattern1.toString()

"tileSize is 4, rowcnt is 350, colcnt is 26, width is 104, height is 1400"

> pattern.toString()

"tileSize is 50, rowcnt is 12, colcnt is 12, width is 600, height is 600"

> pattern2.toString()

"tileSize is 400, rowcnt is 1, colcnt is 3, width is 1200, height is 400"

> pattern3.toString()

"tileSize is 19, rowcnt is 14, colcnt is 14, width is 266, height is 266"

> Pattern pattern5 = new Pattern(1222, 321, tile3)

> pattern5.toString()

"tileSize is 4, rowcnt is 1222, colcnt is 321, width is 1284, height is 4888"

> Pattern pattern6 = new Pattern(1222, 0, tile5)

java.lang.OutOfMemoryError:

> pattern6.toString()

koala.dynamicjava.interpreter.error.CatchedExceptionError: Uncatched exception at koala.dynamicjava.interpreter.EvaluationVisitor.visit(EvaluationVisitor.java:517) at edu.rice.cs.drjava.model.repl.EvaluationVisitorExtension.visit(EvaluationVisitorExtension.java:164) at koala.dynamicjava.tree.ObjectMethodCall.acceptVisitor(ObjectMethodCall.java:85) at edu.rice.cs.drjava.model.repl.DynamicJavaAdapter$InterpreterExtension.interpret(DynamicJavaAdapter.java:209) at edu.rice.cs.drjava.model.repl.DynamicJavaAdapter.interpret(DynamicJavaAdapter.java:95) at edu.rice.cs.drjava.model.repl.newjvm.InterpreterJVM$4.run(InterpreterJVM.java:192) Caused by: java.lang.NullPointerException

> Pattern pattern7 = new Pattern(30,30, tile1)

> pattern7.toString()

"tileSize is 50, rowcnt is 30, colcnt is 30, width is 1500, height is 1500"

> Pattern pattern8 = new Pattern(30,0, tile1)

> Pattern pattern9 = new Pattern(30,0, tile3)

> pattern8.toString()

"tileSize is 50, rowcnt is 30, colcnt is 3, width is 150, height is 1500"

> pattern9.toString()

"tileSize is 4, rowcnt is 30, colcnt is 26, width is 104, height is 120"

TestCode 4:

Testing the displayHalf method

 > pattern.displayHalf(tile1,tile2) tiles sizes must be equal

 > pattern.displayHalf(tile,tile1) > pattern.displayHalf(tile2,tile3) tiles sizes must be equal

 > pattern.displayHalf(tile4,tile7) tiles sizes must be equal

 > pattern.displayHalf(tile,tile3) tiles sizes must be equal

 > pattern.displayHalf(tile1,tile)> pattern.displayHalf(tile,tile) > pattern1.displayHalf(tile2,tile3) > pattern1.displayHalf(tile2,tile4) tiles sizes must be equal

 > pattern1.displayHalf(tile3,tile4) tiles sizes must be equal

 > pattern1.displayHalf(tile3,tile2)> pattern2.displayHalf(tile4,tile5) Must have an even number of columns

 > pattern2.displayHalf(tile5,tile4) Must have an even number of columns

 > pattern2.displayHalf(tile3,tile4) tiles sizes must be equal

 > pattern2.displayHalf(tile3,tile8) koala.dynamicjava.interpreter.error.ExecutionError: Undefined class 'tile8'

 > pattern2.displayHalf(tile3,tile7) tiles sizes must be equal

 > pattern2.displayHalf(tile3,tile) tiles sizes must be equal

 > pattern3.displayHalf(tile6,tile7) tiles sizes must be equal

 > pattern3.displayHalf(tile6,tile6) > pattern3.displayHalf(tile6,tile7 edu.rice.cs.drjava.model.repl.InteractionsException: There was a syntax error in the previous input.

 > pattern3.displayHalf(tile6,tile7) tiles sizes must be equal

 > pattern3.displayHalf(tile6,tile2) tiles sizes must be equal

 > pattern3.displayHalf(tile7,tile7) tiles sizes must be equal

_1106522749

_1106522817

_1106522675

