
CSE142 Wi03 W-1

1/10/2003 (c) 2001-3, University of Washington W-1

CSE 142

Introduction to Recursion

1/10/2003 (c) 2001-3, University of Washington W-2

Outline for Today

• Review
• Method calls and scope
• Static methods

• Today
• Recursion – methods that call themselves
• Recursive and base cases
• Implementation in Java

1/10/2003 (c) 2001-3, University of Washington W-3

Method Calls and Static Methods (Review)

• Recall that a static method is one that is associated with
a class, not a particular instance of a class

• Often used for computations that are not naturally
associated with some object

public class Math {
/** return the square root of x */
public static double sqrt(double x) { … }
/** return the trigonometric sin of theta */
public static double sin(double theta) { … }

}

• Use
double sqrt2 = Math.sqrt(2.0);

1/10/2003 (c) 2001-3, University of Washington W-4

Recursive Definitions

• Classic example: factorial
• Mathematical definition

• Example





−
≤

=
otherwisenn

n
n

)!1(*

11
!

1/10/2003 (c) 2001-3, University of Washington W-5

Factorial in Java

• Could write a loop to multiply 1 * 2 * 3 * … * n
• Can also use the recursive definition directly!

/** return n! = 1 * 2 * 3 * … * n */
public static int factorial(int n) {

}

1/10/2003 (c) 2001-3, University of Washington W-6

Trace

• Evaluate
factorial(4)

CSE142 Wi03 W-2

1/10/2003 (c) 2001-3, University of Washington W-7

How Can This Possibly Work?

• This is an example of a recursive method call – a
method that calls itself as part of its implementation

• There is nothing really new here. A method call works
as it always does:
• First, allocate a new scope for the method’s parameters and

local variables
• Second, initialize parameters with method call arguments
• Third, begin execution of the method body

• Recursive methods work exactly the same
• Also works fine for non-static methods

1/10/2003 (c) 2001-3, University of Washington W-8

Method Call Trace

• Evaluate factorial(4)

1/10/2003 (c) 2001-3, University of Washington W-9

Recursive and Base Cases

• A recursive definition always has two parts
• One or more recursive cases where the method calls itself
• One or more base cases that return a result without an

additional recursive call

• Rules
• There must be at least one base case
• Each recursive case must make progress towards reaching a

base case

• Forgetting either one of these rules is a common source
of errors in recursive methods
• In particular, “infinite” recursion – never reaching a base case;

each call generates yet another recursive call

1/10/2003 (c) 2001-3, University of Washington W-10

Towers of Hanoi

• Classic problem
• Setup

• Three pegs
• Set of disks of different diameters, initially on one peg with

disks stacked in order – largest on bottom, smallest on top

• Problem: move all of the disks from the initial peg to one
of the other two, without ever placing a larger disk on
top of a smaller one

• Can you think of an algorithm to do this?
• Hint: recursion is your friend

1/10/2003 (c) 2001-3, University of Washington W-11

Algorithm for Towers of Hanoi

• Your algorithm here

1/10/2003 (c) 2001-3, University of Washington W-12

Demonstration

CSE142 Wi03 W-3

1/10/2003 (c) 2001-3, University of Washington W-13

Iteration vs Recursion

• Turns out that any iterative algorithm can be reworked
as a recursive algorithm, and vice versa
• Use recursive calls wherever “looping” is needed

• Sometimes this is straightforward – e.g., factorial
• Sometimes less obvious – how would you implement

towers of Hanoi iteratively?
• A non-recursive solution to a naturally recursive problem often

requires extra bookkeeping to keep track of what’s been done
already and what needs to be done

1/10/2003 (c) 2001-3, University of Washington W-14

When to Use Recursion

• Recursion is a natural fit for problems that…
• … have one or more simple cases with a straightforward non-

recursive solution (base cases)
• … have other cases that can be redefined as simpler versions

of the original problem, and repeating these redefinitions gets
closer to one of the simple cases (recursive cases)

• Take advantage of recursion when the problem matches
(Usually – there are occasions where a naturally recursive implementation is too
slow or has too much overhead)

1/10/2003 (c) 2001-3, University of Washington W-15

Example: QuickSort

• Supposed we are asked to sort a list
• QuickSort is an very fast algorithm that makes use of recursion

/** Sort the items in list[from] to list[to] */

public void QuickSort(int from, int to) {
if (to – from <= 1) {

return; // base case – at most one item; nothing to do
} else {

pick some element x from list[from] to list[to];
rearrange the list so that x is in position mid, and all items in list[from] to

list[mid-1] are <= x and all items from list[mid+1] to list[to] are > x;

QuickSort(from, mid-1);
QuickSort(mid+1, to);

}
}

1/10/2003 (c) 2001-3, University of Washington W-16

QuickSort Example

1/10/2003 (c) 2001-3, University of Washington W-17

Another Problem – Path Planning

• Idea: want to discover if there
is a path from square at 0, 0 to
square labeled F (which could
be anywhere)

• Black squares represent
obstacles

• Unless a path is blocked, can
move up, down, left, or right

• Can you design an algorithm
for this?

• Hint: can you use recursion to
help?

• Answer next time

F
0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

r

c

