
CSE142 Wi03 V-1

1/10/2003 (c) 2001-3, University of Washington V-1

CSE 142

Abstract Methods and Interfaces

1/10/2003 (c) 2001-3, University of Washington V-2

Outline for Today

• Review
• Inheritance – types and implementations

• Today
• Abstract classes – specification + partial implementation
• Interfaces – type specification

1/10/2003 (c) 2001-3, University of Washington V-3

A New Application

• Suppose we’re designing the classes for a pet store
simulation

• Inheritance makes sense – we need particular classes
for specific kinds of pets, along with a generic “Pet”
class that captures common behavior

• Client code can either deal with specific kinds of pets, or
generic pets

/** Print information about pet p */
public void printInfo(Pet p) {

System.out.println(“Pet’s name is ” + p.getName() + “ and it weighs ” +
p.getWeight());

}

1/10/2003 (c) 2001-3, University of Washington V-4

Specification of Class Pet

• State (instance variables)
• Name (string)
• Weight (double)

• Behavior (methods)
• constructor
• getName(), getWeight()
• eat(String food)
• speak()

1/10/2003 (c) 2001-3, University of Washington V-5

Specification of a Particular Pet

• Extend Pet with details for particular kind of Pet
• Example

public class Cat extends Pet {
/** Construct new Cat */

public Cat(…) { … }

/** Return a cat noise */

public String speak() {

return “Woof!”;

}

}

1/10/2003 (c) 2001-3, University of Washington V-6

What Noise Does a Generic Pet Make

• We want all Pets to be able to speak
• So, we need to define method speak() in class Pet

• But how should we implement speak() in Pet?
• Question doesn’t really make sense
• We want speak() in Pet to ensure it is part of the interface of all

Pet objects
• But there really isn’t a sensible generic implementation

Classes that extend Pet are expected to provide something appropriate

CSE142 Wi03 V-2

1/10/2003 (c) 2001-3, University of Washington V-7

Abstract Methods

• Idea: allow a method specification to be declared in a class
without an implementation

• Syntax: add the word “abstract” to the method declaration;
replace the body with a “;”

• A class with an abstract method is itself abstract and must be
declared to be so

/** Representation of a generic Pet */
public abstract class Pet {

…
/** Return the noise this pet makes */

public abstract String speak();
…

}

1/10/2003 (c) 2001-3, University of Washington V-8

Implications of Abstract Classes and Methods

• Instances of abstract classes can’t be created
• Abstract methods imply incomplete class implementation

• To be useful an abstract class must be extended
• And implementations of abstract methods must be provided if

instances are to be created

• Abstract classes define new types that can have partial
implementations

• The partial implementation is inherited in extended
classes, as usual

1/10/2003 (c) 2001-3, University of Washington V-9

Interfaces

• Sometimes we only want to define/describe a new type
without providing any implementation at all

• Two choices in Java
• Define an abstract class with only abstract methods
• Define an interface – pure specification with no implementation

(which of these to chose? More in a moment. But first…)

1/10/2003 (c) 2001-3, University of Washington V-10

Interface Definition

• Much like a class definition, but no method bodies and
no state (except for static final constants)

• Everything is implicitly abstract, so “abstract” doesn’t
need to be written

/** Interface filter. All the filters implement this interface */

public interface Filter {

/** Modify the image according to the filter algorithm */

void filter(PixelImage theImage);

}

1/10/2003 (c) 2001-3, University of Washington V-11

Using Interfaces

• Any class can implement any interfaces that make sense
• Syntax

public class <classname> implements <interfacename> {
…

}

• A class that implements an interface must provide
implementations of all methods declared in the interface
• No code is inherited from an interface

• An interface defines a new type
• Any class that implements an interface has the interface

type (in addition to any others it defines or inherits)

1/10/2003 (c) 2001-3, University of Washington V-12

Uses for Interfaces

• Allows a class to implement several different types
• Can implement as many interfaces in a single class as makes

sense for the application

• Allows otherwise unrelated classes to have common
behavior
• Example: objects in a simulation can all implement behavior

that allows them to participate in the simulation, even if they
have nothing else in common

Simulation engine only needs to know about the common interface

CSE142 Wi03 V-3

1/10/2003 (c) 2001-3, University of Washington V-13

Classes, Interfaces, Types, and Inheritance

• Classes and interfaces each define new types
• Classes can extend one other class and implement

many interfaces
• The new class has all of the types and members of the

inherited class and implemented interfaces

• Interfaces can extend other interfaces
• The new interface contains everything in the original interface

plus anything new, and has all of the types involved

• Which do we use where?

1/10/2003 (c) 2001-3, University of Washington V-14

Defining New Classes and Types

• For small, one-use classes, pick whatever is simplest
• For more widely used designs, a convention that’s fairly

common is the following
• Define important new types as interfaces
• If possible, provide a default implementation in a class that

implements as much of the interface as possible
• Client code can either

Implement the interface – meaning provide implementations of all the methods
Extend the default implementation, inheriting what makes sense, and overriding

or implementing anything that needs to be customized

• Maximum flexibility while also allowing code reuse when
possible

