
CSE142 Wi03 V-1

1/10/2003 (c) 2001-3, University of Washington V-1

CSE 142

Inheritance: Types, Classes, and Methods

1/10/2003 (c) 2001-3, University of Washington V-2

Outline for Today

• Review
• Basic ideas of inheritance
• Types, classes, and objects

• Goal for today
• Look at details of inheritance more closely
• Method overriding and overloading
• Class Object

1/10/2003 (c) 2001-3, University of Washington V-3

From Last Time…

• Library Circulation system
• Class CirculationItem – class with common information

• State: title, call number, and whether checked out
• Methods: retrieve title, call number; check in and out, etc.

• Class Book – extended version of CirculationItem
• Additional state – author
• Additional methods – get author

• Class Journal – extended version of CirculationItem
• Additional state – list of articles
• Additional methods – get/set list of articles

1/10/2003 (c) 2001-3, University of Washington V-4

Types (Review)

• Everything in Java has a type
• A combination of state and operations

• Primitive Types: int, double, char, boolean, …
• Simple, atomic state
• Operations built in to Java language: +, -, *, /, %, &&, ||, !, …

• All other types – references to objects (class instances):
Rectangle, Color, Pixel, CirculationItem, Book, …
• State is collection of instance variables
• Operations are methods

• Each class definition specifies a new type with that
name

1/10/2003 (c) 2001-3, University of Washington V-5

Types and Inheritance (1)

• When we define
class Book extends CirculationItem { … }

we create a new type, Book
• Instances of class Book have type Book, and also…
• …have type CirculationItem

• Not so odd if you think about it. Many things in the real world
have multiple “types” or roles. A person can be a student,
employee, partner, child, parent, ….

1/10/2003 (c) 2001-3, University of Washington V-6

Types and Inheritance (2)
class Book extends CirculationItem { … }

• Rule: every Book object is also a CirculationItem object
• Can be used in any situation where either a Book or

CirculationItem is expected
Book b = new Book(…);
Book x = b;
CirculationItem c = b;

• The reverse is not true: there are CirculationItems that
are not Books (plain CirculationItems, Journals)
• So this is not allowed

CirculationItem c = new CirculationItem(…); // ok
Book b1 = c; // compile-time type error
Book b2 = (Book) c; // run time class cast exception error

CSE142 Wi03 V-2

1/10/2003 (c) 2001-3, University of Washington V-7

Dynamic and Static Types

• The static type of a variable is the type in it’s declaration
Book b = …
Journal m = …

CirculationItem c = …

• The dynamic type of a variable is the type of the object it
currently refers to
• Either the variable’s static type or a type that extends it
• Can change during execution

1/10/2003 (c) 2001-3, University of Washington V-8

Dynamic Types

• What are the dynamic types of the variables in the
following code?

Book b = new Book(“Short Story”, “A. U. Thor”, “P34.56”);

CirculationItem c = new CirculationItem(“Rather Bland”, “A1”);

CirculationItem d = new Journal(“Long ‘n Boring”, “Q45.367”);

c = b;

1/10/2003 (c) 2001-3, University of Washington V-9

Static Types and Methods

• If we declare a variable
CirculationItem c = …

the only guarantee we have is that it refers to some sort
of CirculationItem
• Compiler doesn’t attempt to trace values assigned to variables

to decide type information
• So the only methods we can call using the variable c are the

ones available in its static type (CirculationItem)

1/10/2003 (c) 2001-3, University of Washington V-10

Example

• The following produces a compile-time type error
Book b = new Book(“Exciting”, “Great Author”, “H396.47”);
CirculationItem c = b; // fine

System.out.println(c.getAuthor()); // no – static type of c doesn’t include

// a getAuthor() method

• But if we’re sure it will really be a Book at runtime, we
can use a cast

Book temp = (Book)c; // ok

System.out.println(temp.getAuthor()); // fine – temp is a Book

or
System.out.println(((Book) c).getAuthor()); // also ok

1/10/2003 (c) 2001-3, University of Washington V-11

toString()

• So what’s the story with toString()?
• All three classes (CirculationItem, Book, Journal) contain one

of these
• How do we decide which one to use?

Book b = new Book(…);

CirculationItem c = b;

System.out.println(c); // CirculationItem toString() or Book toString()?

1/10/2003 (c) 2001-3, University of Washington V-12

Method Override and Dynamic Dispatch

• When we extend a class, we can redefine a method that
we would otherwise inherit from the original class

• The redefined method is said to override the original
method definition

• When we call a method, the dynamic type of the object
is used to select the appropriate method

CirculationItem c = new Book(…);

System.out.println(c); // dynamic type of c here is Book, so

// toString() from Book is used

• This is called dynamic (method) dispatch

CSE142 Wi03 V-3

1/10/2003 (c) 2001-3, University of Washington V-13

Dynamic Dispatch and Class Hierarchy Design

• Overriding and dynamic dispatch are powerful design
tools

• Idea: when designing a class hierarchy, define in the
original class methods which we want to be available for
all objects in the hierarchy

• Use overriding to provide specialized implementations
in extended classes

• Dynamic dispatch guarantees that the appropriate
overriding methods will be called

1/10/2003 (c) 2001-3, University of Washington V-14

Class Object

• The Java class structure has a root class: Object
• All Java classes implicitly extend Object if they don’t

explicitly extend some other class (which itself extends
Object directly or indirectly)

class CirculationItem { … }

means exactly the same thing as
class CirculationItem extends Object { … }

• Classes like ArrayList have parameters and results of
type Object, so will handle any non-primitive type

public void add(Object obj) { … }
public Object get(int position) { … }

1/10/2003 (c) 2001-3, University of Washington V-15

What’s in Class Object?

• Object contains methods (not many) that are suitable for
all classes

• Class definitions can override these to provide more
appropriate, specific versions

• Examples we’ve seen frequently
• toString()
• equals()

1/10/2003 (c) 2001-3, University of Washington V-16

Overloading

• In a class, it is possible to define more than one method
with the same name

class Thing {
/** do something interesting with a Rectangle */
public void doIt(Rectangle r) { … }
/** do something interesting with an int */
public void doIt(int n) { … }

• This is called method overloading
• Not the same thing as method overriding

(overriding is substituting a new method for one that would otherwise be inherited
when we extend a class)

• Compiler picks right method to use by comparing call
argument types with parameters of available methods

1/10/2003 (c) 2001-3, University of Washington V-17

Example of Overloading – System.out.println

• We’ve been able to use System.out.println to print
anything. How does this work?

• Answer: this method is overloaded for all the basic
types and for class Object

System.out.println(int)
System.out.println(double)
System.out.println(char)
System.out.println(boolean)
System.out.println(Object) // uses toString() to get string to be printed -
… // works for every kind of object (why?)

• Compiler picks actual method to used depending on type of
thing being printed

1/10/2003 (c) 2001-3, University of Washington V-18

That’s (almost) It!

• Key ideas
• Class definition by extension (“is-a”)
• Inheritance
• Static and dynamic types
• Method overriding
• Dynamic dispatch
• Method overloading
• Class Object

• Still to do
• Abstract classes
• Interfaces

