
CSE142 Wi03 Q-1

1/10/2003 (c) 2001-3, University of Washington Q-1

CSE 142

Sorting

1/10/2003 (c) 2001-3, University of Washington Q-2

Outline for Today

• Review
• Sequential vs Binary Searcy
• Arrays

• Maintaining an Ordered List
• Sorting

1/10/2003 (c) 2001-3, University of Washington Q-3

Linear vs Binary Search

• Recall work needed to search a list of n items
• Linear search ~ n
• Binary search ~ log n

• For all but small lists, binary search is much, much,
much faster
• For n = 1,000, log n ~ 10
• For n = 1,000,000, log n ~ 20

• But we can only do binary search if the list is sorted
• So how do we sort a list?

1/10/2003 (c) 2001-3, University of Washington Q-4

Design Your Sorting Algorithm Here

1/10/2003 (c) 2001-3, University of Washington Q-5

A Sorted StringList
• Choices

• Keep list sorted at all times
Need to make adjustments in add method

• Sort list before searching if not done already
Need check in contains (search) method to sort if not currently sorted

• In either case, order of items in list is no longer order in
which added
• But that’s presumably ok – if we want really fast searches, this

is a tradeoff worth making
• Terminology: this is a multiset or bag of strings

/** Unordered collection of Strings, possibly with duplicate elements */
public class StringBag { … }

1/10/2003 (c) 2001-3, University of Washington Q-6

Maintaining a Sorted List

• Nothing in the client interface changes
• Except we can no longer allow client to insert arbitrary strings

in the middle of the list

• Implementation now relies on list being sorted, so it’s
crucial that we record this information in a comment

// instance variables

private String[] strings; // Strings in this StringList are stored in

private int numStrings; // strings[0] through strings[numStrings-1],

// and the strings are stored in ascending
// order: strings[0] <= strings[1] <= …
// <= strings[numStrings-1]

CSE142 Wi03 Q-2

1/10/2003 (c) 2001-3, University of Washington Q-7

Method add
• Only method from original StringList that needs to be changed

(true?)
/** Add str to this StringBag. Return true if successful, otherwise return false */
public boolean add(String str) {

if (this.numStrings == this.strings.length) {
return false;

}
// find correct location to place str
…
// shift larger elements one position to the right
…
// place str in correct location
…
numStrings++;
return true;

}

1/10/2003 (c) 2001-3, University of Washington Q-8

Modified method add

• Picture:

• Implementation details: exercise

1/10/2003 (c) 2001-3, University of Washington Q-9

Selection Sort

• Sort elements in unordered list
• Idea: At each step, pick smallest element in not-yet-

sorted part of array and move it to the front
• Picture

• Detailed step (repeat until sorted)
• Find smallest item in strings[k]..strings[numStrings-1]
• Swap that item with item in strings[k]
• Increase k and repeat

0 k numStrings

strings smallest items, sorted larger items, not sorted

1/10/2003 (c) 2001-3, University of Washington Q-10

Code For Selection Sort

1/10/2003 (c) 2001-3, University of Washington Q-11

Code for Finding Minimum Element

1/10/2003 (c) 2001-3, University of Washington Q-12

Test

• Invent some data, check the code

CSE142 Wi03 Q-3

1/10/2003 (c) 2001-3, University of Washington Q-13

Embedding in a String Collection Class

• Our original StringList class can be changed to sort the
list as needed to allow binary search for contains
• Add an instance variable to record whether the list is sorted
• In method add, set this variable to false
• In method contain, call the sort method if this variable is false,

then do a binary search after the sort finishes
• In method sort, set the variable to true after sorting

1/10/2003 (c) 2001-3, University of Washington Q-14

Conclusion

• Performance Tradeoffs
• Sorting is relatively expensive
• Pays off if searches are frequent and clustered together

compared to additions to the list

• Can either maintain list in sorted order at all times
(expensive add operation) or sort when needed
(potentially expensive lookup)

• For both algorithms, the diagrams give the key ideas
• The code is relatively straightforward from there

