
CSE142 Wi03 L-1

1/10/2003 (c) 2001-3, University of Washington L-1

CSE 142

Introduction to Collections – ArrayLists

1/10/2003 (c) 2001-3, University of Washington L-2

Outline for Today
• Collections of Data
• ArrayLists
• Technicalities – casts, reference vs primitive types

1/10/2003 (c) 2001-3, University of Washington L-3

Collections in the Real World

• Think about:
• words in a dictionary
• list of students in a class
• deck of cards
• books in a library
• MP3 files on a computer

• These things are all collections
• Some collections are ordered, others are unordered

1/10/2003 (c) 2001-3, University of Washington L-4

An Ordered Collection: ArrayList
• ArrayList is a Java class whose instances store an ordered

collection of things. Here's part of its specification
public class ArrayList {

// Create an empty collection
public ArrayList();

// Add the given object to the end of this collection
public void add(Object o);

// Return the size of this collection
public int size();
…

}

• New: Object type – means any kind of object at all

1/10/2003 (c) 2001-3, University of Washington L-5

Using ArrayLists
• Creating a list:

ArrayList names = new ArrayList ();

• Adding things:
names.add("Billy");
names.add("Susan");
names.add("Frodo");

• Getting the size:
int numberOfNames = names.size();

• Write import java.util.*; to use ArrayList in the interactions
window or in your code

1/10/2003 (c) 2001-3, University of Washington L-6

ArrayList Diagram

CSE142 Wi03 L-2

1/10/2003 (c) 2001-3, University of Washington L-7

More ArrayList Methods

• Here's more of its interface:
public class ArrayList {

…

// Return the object at the given index (numbered starting from 0, not 1!).
// Raise an exception if index is out-of-bounds.
public Object get(int index);

// Change the object at the given index (starting from 0) to be newElement.
// Raise an exception if index isn't in bounds.
// Return the element that used to be there.
public Object set(int index, Object newElement);

}

1/10/2003 (c) 2001-3, University of Washington L-8

More Using ArrayLists

• ArrayLists provide indexed access. We can ask for the
ith item of the list, where the first item is at index 0, the
second at index 1, and the last item is at index n-1
(where n is the size of the collection).

ArrayList names = new ArrayList ();

names.add("Billy");

names.add("Susan");

• Java expressions:
names.get(0)

names.get(1)

1/10/2003 (c) 2001-3, University of Washington L-9

A Problem

• Let's say we want to get something out of an ArrayList
and assign it to a variable

• We might write the following:
String name = names.get(0);
System.out.println("The first name is " + name);

• But Java complains about the green line:
"incompatible types: found: Object, required: String”

(DrJava’s interactions window allows this without complaining, even though it’s
not legal in regular Java)

• Why? [Hint: look at the interface of the get method]

1/10/2003 (c) 2001-3, University of Washington L-10

Object

• The return type of method get() is Object.
• Think of Object as Java's way of saying "any type".
• All classes in Java (including the ones we write) have an

"is-a" relationship to Object. In other words:
• every String is an Object
• every Rectangle is an Object
• every ArrayList is an Object

• The reverse is not generally true!
• every Object is not necessarily a String

1/10/2003 (c) 2001-3, University of Washington L-11

Making False Claims

• We can say…
Object someObject = new Rectangle(. . .);

… because every Rectangle is an Object.

• In our example:
String name = names.get(0);
System.out.println("The first name is " + name);

• We are claiming that an Object (the result of get) is a
String, which is not necessarily true!
• What if we passed an ArrayList of Rectangles to

printFirstName?

1/10/2003 (c) 2001-3, University of Washington L-12

Making Promises: Casting

• It looks like we're stuck. We can add things to the
collection, but we can't get them back out!

• The solution is to make a promise
• Say we know that we've only placed String objects into the

ArrayList. We can promise the compiler that the thing coming
back out of the ArrayList is actually a String

String name = (String)names.get(0);

System.out.println("The first name is " + name);

• This is (another use of) a cast

CSE142 Wi03 L-3

1/10/2003 (c) 2001-3, University of Washington L-13

Casting (Review)

• Pattern:
(<class-name>)<expression>

• Example:
String name = (String)names.get(0);

• Casting does not change the type of the object. It is a
promise that the object really is of the stated type.

• Casting also used for conversions, as we've seen.
(int) 3.1415927

1/10/2003 (c) 2001-3, University of Washington L-14

Miscasting

• We can abuse casting, but it will be caught at runtime.

String name = (String)names.get(0);

System.out.println("The first name is " + name);

Rectangle box = (Rectangle)names.get(0); // Run time error!!

System.out.println("The left edge is " + box.getX());

• A "class cast exception" is raised if a promise is broken.

1/10/2003 (c) 2001-3, University of Washington L-15

Reference vs. Primitive Types
• A few Java types are primitive

int, double, char, boolean, and a few other numeric types we normally won’t use

• Are atomic chunks, with no parts (i.e., no instance variables)
• Exist without having to be allocated with new
• Cannot receive messages (i.e., do not have methods) but can

be arguments of messages and unary and binary operators

• All others are reference types
Rectangle, BankAccount, Color, String, etc.

• Instances of some class
• Created by new
• Can have instance variables and methods
• All are special cases of the generic type “Object”

1/10/2003 (c) 2001-3, University of Washington L-16

When Does the Distinction Matter?

• One place: when putting values in collections
ArrayList list = new ArrayList();
list.add(5); // error: int isn't an Object

• Solution (if we really need to do this): create a wrapper
object containing the primitive value. There is a wrapper
class for each primitive type, e.g. Integer, Double.

ArrayList list = new ArrayList();

Integer five = new Integer(5); // create an Integer object with a 5 in it

list.add(five); // ok: Integer is an Object

…
Integer firstElem = (Integer) list.get(0); // promise that the Object is an Integer

int v = five.intValue(); // extract the int value from the Integer object

1/10/2003 (c) 2001-3, University of Washington L-17

Summary

• Collections: Many kinds
• Common in computer programs
• Often correspond to collections of objects in the real world

• A simple collection: ArrayList
• Sequential, ordered collection
• Many methods: add, get, size, isEmpty, … (see Sun Java Docs)
• import. java.util.*; to access

• Casts
• Often needed to specify actual type of object retrieved from a collection

(since collection can hold any kind of object)

• Primitive vs. reference types: need to place primitive values in
wrapper objects if we want to store them in a collection

