
15-August-2003 cse142-23-inheritance © 2003 University of Washington 1

Inheritance

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

15-August-2003 cse142-23-inheritance © 2003 University of Washington 2

Readings and References

• Reading
» Chapter 14 through 14.5, Intro to Programming and

Object-Oriented Design Using Java, Niño and Hosch

• Other References
» Object Basics and Simple Data Objects
» Classes and Inheritance
» http://java.sun.com/docs/books/tutorial/java/TOC.html#concepts

15-August-2003 cse142-23-inheritance © 2003 University of Washington 3

Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship
» eg, a PetList has a list of Animals

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship
» eg, a String is a Object
» eg, a Rectangle is a ShapeImpl

15-August-2003 cse142-23-inheritance © 2003 University of Washington 4

PetList has a list of Animals

Inventory
ArrayList theBunch

ArrayList
int size

item 0

item 1

item 2

etc

Dog

Sparrow

Cat

Rectangle is a ShapeImpl

ShapeImpl is a Object

15-August-2003 cse142-23-inheritance © 2003 University of Washington 6

Why use inheritance?
• Code simplification

» Deal with objects based on their common behavior,
and don’t need to have special cases for each
subtype

» Avoid doing the same operation in two places
» Avoid storing “matching state” in two places
» Lots of elegant code has already been written - use

it, don’t try to rewrite everything from scratch

15-August-2003 cse142-23-inheritance © 2003 University of Washington 7

Why use inheritance?
• Example: Animals

» What is some behavior common to all animals?
• eat, sleep

» What are some attributes common to all animals?
• mealSize, weight

• We can define behaviors that an Animal must
using the Animal interface

• But even with an interface defined, we still
need implementations for each method

15-August-2003 cse142-23-inheritance © 2003 University of Washington 8

The Animal interface
public interface Animal {

/**
* Provide this animal with a way to rest when weary.
*/
public void sleep();
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(double pounds);
/**
* get the meal size defined for this animal.
* @return meal size in pounds
*/

public double getMealSize();
/**
* Provide this animal with a voice.
*/
public void noise();

}

15-August-2003 cse142-23-inheritance © 2003 University of Washington 9

Reduce the need for duplicated code

• Think about our collection of pets
» Dog has getMealSize() and eat(double w) methods
» Cat has getMealSize() and eat(double w) methods
» and they were implemented exactly the same way

• We can define a class named BasicAnimal that
implements these methods once, and then the
subclasses can extend it and add their own
implementations of other methods if they like

15-August-2003 cse142-23-inheritance © 2003 University of Washington 10

BasicAnimal class

15-August-2003 cse142-23-inheritance © 2003 University of Washington 11

Dog as a subclass of BasicAnimal

15-August-2003 cse142-23-inheritance © 2003 University of Washington 12

Why use inheritance?
• Sometimes it takes several levels of abstraction to

get to concrete objects
» a Triangle is a PolyShape, which is a ShapeImpl, which

is an Object. At each of these levels, there might be
behavior to “factor out” or abstract away.

• All Shapes must implement similar methods
» we want to do “int x = blob.getX()”
» if both Triangles and Ovals implement this the same

way, we can implement getX() in one base class, and
use it in the subclasses instead of rewriting it each time

Triangle constructors and methods

15-August-2003 cse142-23-inheritance © 2003 University of Washington 14

Syntax of inheritance

• Specify inheritance relationship using extends
» this is just like we did with interfaces

public abstract class ShapeImpl implements Shape {
protected Rectangle boundingBox;
…
public int getX() {

return boundingBox.getX();
}

}

public abstract class PolyShape extends ShapeImpl {
private int npoints;

public class Triangle extends PolyShape {

15-August-2003 cse142-23-inheritance © 2003 University of Washington 15

Using the superclass constructor
• Constructor of the superclass is called to do much

(or all) of the initialization for the subclass

public class BasicAnimal implements Animal {
public BasicAnimal(String theName,double serving,double weight) {

name = theName;
mealSize = serving;
currentWeight = weight;
System.out.println("Created "+name);

}

public class Dog extends BasicAnimal {
public Dog(String theName) {

super(theName,0.5,20);
}
public Dog(String theName,double serving,double weight) {

super(theName,serving,weight);
}

15-August-2003 cse142-23-inheritance © 2003 University of Washington 16

this() and super() as constructors
• You can use an alias to call another constructor

» super(...) to call a superclass constructor
» this(...) to call another constructor from same class

• The call to the other constructor must be the first
line of the constructor
» If neither this() nor super() is the first line in a

constructor, a call to super() is inserted automatically by
the compiler. This call takes no arguments. If the
superclass has no constructor that takes no arguments,
the class will not compile.

15-August-2003 cse142-23-inheritance © 2003 University of Washington 17

Overriding methods
• Overriding methods is how a subclass refines or

extends the behavior of a superclass method
• Dog and Cat classes extend BasicAnimal
• How do we specify different behavior for Dogs

and Cats?
» BasicAnimal:

» Cat:

public void sleep() {...}

public void sleep() {... ? ...}

15-August-2003 cse142-23-inheritance © 2003 University of Washington 18

Overriding methods
public class BasicAnimal {

// other stuff

public void sleep() {

System.out.println(name+" : Snrf ... mutter ... snrf ...");

}

}

public class Cat extends BasicAnimal {

// other stuff

public void sleep() {

System.out.println(name+" : Snore ... snore ... sigh ...");

}

}

15-August-2003 cse142-23-inheritance © 2003 University of Washington 19

// in superclass
public void sleep() {...}

// in subclass
public void sleep() {...} // valid
private void sleep() {...} // invalid

Overriding rules

• A method cannot be made more private than
the superclass method it overrides

15-August-2003 cse142-23-inheritance © 2003 University of Washington 20

Overriding rules

• A method’s return type and parameters must
match those in the overridden superclass
method exactly in order to override it.

// in superclass
public int pay(int hours) {}

// in subclass
public int pay(int b) {} // okay, overrides
public long pay(int b) {} // compile error

15-August-2003 cse142-23-inheritance © 2003 University of Washington 21

instanceof

• Used to test an object for class membership

• One way to ensure that a cast will succeed
• Tests for a relationship anywhere along the

hierarchy
• Also can be used to test whether a class

implements an interface

if (bunch.get(i) instanceof Dog) {…}

if (bunch.get(i) instanceof Animal) {…}

