
13-August-2003 cse142-22-files © 2003 University of Washington 1

Files

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

13-August-2003 cse142-22-files © 2003 University of Washington 2

Sources and Sinks - Files

• When reading from a file
» the file is the source
» a data structure in your application is the sink

• When writing to a file
» a data structure in your application is the source
» the file is the sink

13-August-2003 cse142-22-files © 2003 University of Washington 3

The stream model applied to files

• The source can be a file on disk

file on disk a variable
in the program

read using an InputStream

• The sink can be a file on disk

file on diska variable
in the program

write using an OutputStream

13-August-2003 cse142-22-files © 2003 University of Washington 4

FileInputStream and FileOutputStream
• The file streams read or write from a file on the

native file system
» FileInputStream

• retrieve bytes from a file and provide them to the program

» FileOutputStream
• send bytes to a file from your program

• If used by themselves, FileInputStream and
FileOutputStream are for binary I/O
» just plain bytes in and out with no interpretation as

characters or anything else

FileInputStream methods
int available()

Returns the number of bytes that can be read from this file input stream without
blocking.

void close()
Closes this file input stream and releases any system resources associated with
the stream.

protected void finalize()
Ensures that the close method of this file input stream is called when there are
no more references to it.

FileDescriptor getFD()
Returns the FileDescriptor object that represents the connection to the actual
file in the file system being used by this FileInputStream.

int read()
Reads a byte of data from this input stream.

int read(byte[] b)
Reads up to b.length bytes of data from this input stream into an array of bytes.

int read(byte[] b, int off, int len)
Reads up to len bytes of data from this input stream into an array of bytes.

long skip(long n)
Skips over and discards n bytes of data from the input stream.

void mark(int readlimit)
Marks the current position in this input stream.

boolean markSupported()
Tests if this input stream supports the mark and reset methods.

void reset()
Repositions this stream to the position at the time the mark method was last
called on this input stream. 13-August-2003 cse142-22-files © 2003 University of Washington 6

"bytes from a file" and "bytes as text" ...

• Create new FileInputStream and connect it to a
specific file

• "decorate" the stream with an InputStreamReader
that will do Unicode translation for you

FileInputStream(String name)
Create a FileInputStream by opening a connection to an actual file, the
file named by the path name in the file system.

InputStreamReader(InputStream in)
Create an InputStreamReader that uses the default character encoding.

InputStreamReader(InputStream in, String enc)
Create an InputStreamReader that uses the named character encoding.

13-August-2003 cse142-22-files © 2003 University of Washington 7

prepare to read a text file

public TextFileRead(String fn) throws IOException {

InputStream in = new FileInputStream(fn);

textReader = new BufferedReader(new InputStreamReader(in));

}

open an InputStream connected to the filename provided

add buffering capability so that we
read many bytes in one operation

make it a Reader so that we
get valid Unicode characters

1

2
3

13-August-2003 cse142-22-files © 2003 University of Washington 8

 ... or "bytes from a file as text"

• Create new FileReader and connect it to a file
» FileReader is a convenience class for reading character

files. The constructors of this class assume that the
default character encoding and the default byte-buffer
size are appropriate. To specify these values yourself,
construct an InputStreamReader on a FileInputStream.

FileReader(String fileName)
Creates a new FileReader, given the name of the file to read from.

13-August-2003 cse142-22-files © 2003 University of Washington 9

prepare to read a text file

public TextFileRead(String fn) throws IOException {
textReader = new BufferedReader(new FileReader(fn));

}

Open a new Reader with an
implicit InputStream connected
 to the filename providedadd buffering capability so that we

read many bytes in one operation

1

2

13-August-2003 cse142-22-files © 2003 University of Washington 10

readline()

• Read one line from a BufferedReader
» returns a String containing the contents of the line,

not including any line-termination characters, or
null if the end of the stream has been reached

/**
* Read one line from the text file and return it as a String
* to the caller.
* The line might be null (at end of file), empty (0 characters),
* or blank (all whitespace). Of course, it might also be a
* non-blank String with some useful characters in it.
* @return a String containing the next line or null if
* we are at the end of the file
* @throws IOException if there is an error reading the file
*/
public String getNextLine() throws IOException {

return textReader.readLine();
}

13-August-2003 cse142-22-files © 2003 University of Washington 11

Detecting end of file

• End of file is expected when using readline()
» you will eventually read all the characters in a file

• So the method returns null if we are end of
file
» you must check for null after every readline() call

String myLine = tr.getNextLine();
while (myLine != null) {

System.out.println(">> "+myLine);
myLine = tr.getNextLine();

}

13-August-2003 cse142-22-files © 2003 University of Washington 12

close when done

• After reading through the file, you should
close the stream, since an open file takes up
system resources and prevents other programs
from using the file

/**
* Close the stream.
*/
public void close() throws IOException {

textReader.close();
}

13-August-2003 cse142-22-files © 2003 University of Washington 13

"bytes to a file as text"
• Create new PrintWriter and connect it to a file

using a FileWriter
» PrintWriter provides the text formatting capabilities
» FileWriter provides the connection between the

PrintWriter and the actual file
» FileWriter is a convenience class like FileReader

• could use OutputStreamWriter with a FileOutputStream
PrintWriter(Writer out)

Create a new PrintWriter, without automatic line flushing.

FileWriter(String fileName)
Constructs a FileWriter object given a file name.

13-August-2003 cse142-22-files © 2003 University of Washington 14

prepare to write a file

public TextFileWrite(String fn) throws IOException {
File sink = new File(fn);
sink.createNewFile();
System.out.println("Created "+sink.getAbsolutePath());
textWriter = new PrintWriter(new BufferedWriter(new FileWriter(sink)));

}

create a new file with the name given to us for writing

add formatting so that
Java can convert values
to character strings for us

open the file as a
Writer so Unicode
works correctly

1

24

add buffering for
efficiency

3

13-August-2003 cse142-22-files © 2003 University of Washington 15

println(...)

• Print formatted representations of objects and
primitive type to a text-output stream
» does not contain methods for writing raw bytes,

for which a program should use unencoded byte
streams

/**
* Write one line on the output file.
* @param line the line of text to write out
*/
public void writeOneLine(String s) {

textWriter.println(s);
}

13-August-2003 cse142-22-files © 2003 University of Washington 16

close when done

• After writing the file, you should close the stream
» the last data that you have written may not actually

have gotten all the way out to the disk - closing
makes sure that the data is flushed to disk

» an open file takes up system resources and prevents
other programs from using the file

/**
* Close the stream.
*/
public void close() throws IOException {

textWriter.close();
}

13-August-2003 cse142-22-files © 2003 University of Washington 17

The File class
• Manages an entry in a directory (a pathname)
• Several constructors are available

» File(String pathname)
• pathname string

» File(String parent, String child)
• parent pathname string and a child pathname string.

» File(File parent, String child)
• parent pathname File object and a child pathname string.

• The File() constructors create a pathname object
in memory, NOT a new file on disk

13-August-2003 cse142-22-files © 2003 University of Washington 18

File class example
File wd = new File("uwcse.jar");

System.out.println("Path: "+wd.getPath());

System.out.println("Absolute Path: "+wd.getAbsolutePath());

System.out.println("Canonical Path: "+wd.getCanonicalPath());

System.out.println("Exists? "+wd.exists());

System.out.println("Is directory? "+wd.isDirectory());

• Creating a new File object just creates a tool for
managing files, it does not create a new file on disk!
» Creating a new Dog object did not create a new dog

running around the room ...

• Use the methods of the File class to actually do things

13-August-2003 cse142-22-files © 2003 University of Washington 19

File class methods

• Create, rename, delete a file
» createNewFile(), createTempFile(), renameTo(), delete()

• Determine whether a file exists and access limitations
» exists(), canRead(), canWrite()

• Get file info
» getParent(), getCanonicalPath(), length(), lastModified()

• Create and get directory info
» mkdirs(), list(), listFiles(), getParent()

• Etc, etc

