
11-August-2003 cse142-21-streams © 2003 University of Washington 1

Input / Output Streams

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

11-August-2003 cse142-21-streams © 2003 University of Washington 2

Readings and References

• Reading
» Appendix A, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch

• Other References
» Section "I/O" of the Java tutorial
» http://java.sun.com/docs/books/tutorial/essential/io/index.html

11-August-2003 cse142-21-streams © 2003 University of Washington 3

Input & Output

• Program input can come from a variety of
places:
» the mouse, keyboard, disk, network…

• Program output can go to a variety of places:
» the screen, speakers, disk, network, printer…

11-August-2003 cse142-21-streams © 2003 University of Washington 4

"Streams" are the basic I/O objects

keyboard,
disk file,
network,
etc

display,
disk file,
network,
etc

from Sun tutorial on I/O



11-August-2003 cse142-21-streams © 2003 University of Washington 5

The stream model

• The stream model views all data as coming
from a source and going to a sink

Source SinkStream

• Sources and sinks can be files, memory, the
console, network ports, serial ports, etc

11-August-2003 cse142-21-streams © 2003 University of Washington 6

Streams

• Getting data from source to sink is the job of
an object of a stream class

• Use different streams for doing different jobs
• Streams appear in many packages

» java.io - basic stream functionality, files
» java.net - network sockets
» javax.comm - serial ports
» java.util.zip - zip files

11-August-2003 cse142-21-streams © 2003 University of Washington 7

Streams are layered classes

• Each layer adds a little bit of functionality
» in some ways, this is similar to how the ArrayList

class adds functionality to the simple array
• One nice thing about this design is that many

programs don't need to know exactly what
kind of stream they are working with
» one OutputStream is as good as another in many

situations, as long as it knows how to move data

11-August-2003 cse142-21-streams © 2003 University of Washington 8

OutputStream

• An OutputStream sends data to a sink
» OutputStream is an abstract class

• implements some but not all of a group of methods

» subclasses extend this abstract class and implement
the actual write method depending on the device

• Key methods:
abstract void write(int b) throws IOException

void write(byte[] b) throws IOException

void close() throws IOException



11-August-2003 cse142-21-streams © 2003 University of Washington 9

Inheritance and Subclasses
• We can extend a class in order to add new

methods to the basic class
» This is the fundamental concept of inheritance

• The basic class might be complete in itself
» for example, Object
» extend it to define a new class and add new methods

• The basic class might be incomplete
» for example, OutputStream
» extend it to define a new class and add missing and

new methods

FileOutputStream extends 
OutputStream to write to 

disk files

OutputStream is 
an abstract class

11-August-2003 cse142-21-streams © 2003 University of Washington 11

OutputStream subclasses

• Subclasses differ in how they implement write()
and in what kind of sink they deal with:
» FileOutputStream: sink is a file on disk
» ByteArrayOutputStream: sink is an array of bytes
» PipedOutputStream: sink is a pipe to another thread

• Other subclasses process output streams
» FilterOutputStream: process the stream in transit
» ObjectOutputStream: primitives and objects to a sink

11-August-2003 cse142-21-streams © 2003 University of Washington 12

FilterOutputStream
• Constructor takes an instance of OutputStream
• Resulting object is also instance of OutputStream
• These classes decorate the basic OutputStream

implementations with extra functionality
• Subclasses of FilterOutputStream in java.io:

» BufferedOutputStream adds buffering for efficiency
» PrintStream: supports display of data in text form (using the

default encoding only)
» DataOutputStream: write primitive data types and Strings

(in binary form)



buffer picture
11-August-2003 cse142-21-streams © 2003 University of Washington 14

InputStream

• An InputStream gets bytes from a source
» InputStream is an abstract class

• implements some but not all of a group of methods

» subclasses extend this abstract class and implement
the actual read method depending on the device

• Key methods:
abstract int read() throws IOException

int read(byte[] b) throws IOException

void close() throws IOException

11-August-2003 cse142-21-streams © 2003 University of Washington 15

InputStream subclasses

• Subclasses differ in how they implement read()
and in what kind of source they deal with:
» FileInputStream: source is a file on disk
» ByteArrayInputStream: source is an array of byte
» PipedInputStream: source is pipe from another thread

• Other subclasses process input streams
» FilterInputStream: process the stream in transit
» ObjectInputStream: primitives and objects from a

source

11-August-2003 cse142-21-streams © 2003 University of Washington 16

FilterInputStream

• Constructor takes an instance of InputStream
• Resulting object is also instance of InputStream
• These classes “decorate” the basic InputStream

implementations with extra functionality
• Some useful subclasses

» BufferedInputStream: adds buffering for efficiency
» ZipInputStream: read zip files
» DataInputStream: read primitive data types and Strings (in

binary form)



InputStream in = new FileInputStream(fn);
textReader = new BufferedReader(new InputStreamReader(in));

from ex21\TextFileRead.java
11-August-2003 cse142-21-streams © 2003 University of Washington 18

Sources and Sinks - Console

• When reading from the console
» the keyboard is the source
» a data structure in your application is the sink

• When writing to the console
» a data structure in your application is the source
» the monitor (terminal window) is the sink

11-August-2003 cse142-21-streams © 2003 University of Washington 19

Reader and Writer
• Reader and Writer are abstract classes that are

Unicode aware and can use a specified encoding
to translate Unicode to/from bytes

• Subclasses implement most of the functionality
» InputStreamReader, OutputStreamWriter

• rely on the underlying streams to actually move bytes

» BufferedReader, BufferedWriter
• add buffering for efficiency

» StringReader, StringWriter
» PipedReader, PipedWriter

11-August-2003 cse142-21-streams © 2003 University of Washington 20

Reader and Writer guidelines

• In general:
» If you’re working with text (Strings and chars),

use Readers and Writers
» If you’re working with primitive data types, use

InputStreams and OutputStreams
» If you get an InputStream or OutputStream from

somewhere else, you can convert it to a Reader or
a Writer as needed by wrapping it with an
InputStreamReader or OutputStreamWriter



11-August-2003 cse142-21-streams © 2003 University of Washington 21

System.in, System.out

• System.in is a predefined InputStream
• You can convert to a BufferedReader like this:

• System.out is a predefined OutputStream
• You can convert to a PrintWriter like this:

BufferedReader r =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter w =
new PrintWriter(new OutputStreamWriter(System.out),true);


