
8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 1

2-D Arrays

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 2

Review – Arrays

• Simple, ordered collections
• Elements of a particular array all have the

same type
• Size fixed when array created

Rectangle[] rects = new Rectangle[count];

• Indexed access to elements
rects[3] = new Rectangle();
rects[3].moveBy(10, 20);

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 3

2-D Arrays

• Suppose we want to represent a list of things, each of
which consists of a list of other things

• For example
» several patterns, each of which includes several shapes
» several groups of computers
» several groups of books

• One way to do this is with a 2-dimensional array
» The first dimension is the group
» The second dimension is the elements of the group

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 4

Using 2-D arrays
• Type pattern

» <elem type>[][]
» for example: Shape[][]

• New expression pattern
» new <elem type>[<dim 1 size>][<dim 2 size>]
» for example: Shape[][] pat = new Shape[10][5];

» for example: Shape[][] pat = new Shape[10][];

• Access expression / assignment pattern
» <array>[<dim 1 index>][<dim 2 index>]
» for example: Shape x = pat[1][0];

» "from pattern pat[1] select the first Shape pat[1][0]"

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 5

Picture

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 6

2-D Array = Array of Arrays

• A 2-D array is just an array of arrays
• There are various ways to access the elements

» access an element directly

» get the row array, then access elements of the row
individually

Shape x = raggedPatterns[i][j];

Shape[] row = raggedPatterns[i];
Shape x = row[j];

8-August-2003 cse142-21-2d-arrays © 2003 University of Washington 7

Summary

• 2-D arrays
» In Java, just an array of arrays
» Syntax is extension of 1-D array case

• type[][] name = new type[nRows][nCols]
• name[r][c]

• n-D arrays
» you can have any number of dimensions

• arrays of objects are very handy, and usually
more useful than a 2-D array

