
8-August-2003 cse142-20a-sort © 2003 University of Washington 1

Sorting

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/



8-August-2003 cse142-20a-sort © 2003 University of Washington 2

Linear vs Binary Search

• Recall work needed to search a list of n items
» Linear search ~ n
» Binary search ~ log n

• For all but small lists, binary search is much,
much, much faster
» For n = 1,000, log n ~ 10
» For n = 1,000,000, log n ~ 20



matlab generated using ex20\showlog.m



8-August-2003 cse142-20a-sort © 2003 University of Washington 4

Simple sort is easy, fast sort is tricky

• There are lots of possible sorting algorithms
• The speed of the sort may depend on the data

» completely random
» already sorted, sorted but in reverse order
» odd patterns of partially sorted data

• Today's goal
» understand the concept of sorting
» understand that there are good sorters available



8-August-2003 cse142-20a-sort © 2003 University of Washington 5

public void addItem(Comparable obj) {
int j = theList.size();
while(j > 0 && ((Comparable)theList.get(j-1)).compareTo(obj)>0 ) {

j--;
}
theList.add(j,obj);

}

Recall addItem from ListManager

• The existing list is already in order
• Find the correct spot for the new item
• Insert the new item in the correct spot



8-August-2003 cse142-20a-sort © 2003 University of Washington 6

Insertion Sort

This technique can be the basis of a simple sort
algorithm

initialize the sorted part to be empty
for each item in the list

copy the tail of the list down until we find
the correct spot for the item in the sorted part

insert the item in the correct position

the list is now sorted



8-August-2003 cse142-20a-sort © 2003 University of Washington 7

Insertion sort example
7 4 12 5 19 16
0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

unsorted

item 1 = 4

copy item 0

insert value

7 12 5 19 164

7 12 5 19 167

4 12 5 19 167

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

item 2 = 12

item3 = 5

copy item 2

copy item 1

7 12 5 19 164

7 12 5 19 164

7 12 12 19 164

7 7 12 19 164

0 1 2 3 4 5

insert value 5 7 12 19 164

this part is now sorted



8-August-2003 cse142-20a-sort © 2003 University of Washington 8

Insertion Sort

• Insertion sort is used as the bottom level of many other
sorting routines, so you will see this implemented in a
variety of forms if you study sorting algorithms

public void InsertionSort(int x[]) {
for(int p = 1; p < x.length; p++ ) {

int j;
int tmp = x[p];
for(j=p; j > 0 && x[j-1] > tmp;j-- )

x[j] = x[j-1];
x[j] = tmp;

}
}



8-August-2003 cse142-20a-sort © 2003 University of Washington 9

Insertion Sort Characteristics

• Running time
» Worst case is proportional to N2

• reverse order input
• must copy every element every time

» Best case is proportional to N
• in-order input
• copy down stops with first comparison every time



8-August-2003 cse142-20a-sort © 2003 University of Washington 10

N2 is too slow for big arrays

• There are better sort algorithms for larger lists
» slightly more complex, so there is more overhead
» improvement is often sensitive to input data
» typically divide the list to be sorted into sub-arrays

and sort those
• the dividing process does some sorting
• insertion sort sub-arrays with less than ~7 elements

• Use the sort methods in Arrays and Collections
to sort large lists



8-August-2003 cse142-20a-sort © 2003 University of Washington 11

Conclusion

• Performance Tradeoffs
» Sorting is relatively expensive
» Pays off if searches are frequent and clustered

together compared to additions to the list
• Can either

» maintain lists in sorted order at all times
• add operation is more expensive

» sort when needed for a find operation
• find operation is expensive when it includes a sort


