Sorting

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/
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Linear vs Binary Search

» Recall work needed to search a list of n items
» Linear search ~n
» Binary search ~log n

 For all but small lists, binary search is much,
much, much faster
» Forn=1,000, logn~10
» For n= 1,000,000, log n~ 20
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matlab generated using ex20\showlog.m

Simple sort is easy, fast sort is tricky

* There are lots of possible sorting algorithms
» The speed of the sort may depend on the data
» completely random
» already sorted, sorted but in reverse order
» odd patterns of partially sorted data
» Today's goal
» understand the concept of sorting
» understand that there are good sorters available
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Recall addItem from ListManager

» The existing list is already in order
 Find the correct spot for the new item
* Insert the new item in the correct spot

public void addlten(Conparabl e obj) {
int j = theList.size();
while(j > 0 & & ((Conparabl e)thelList.get(j-1)).conpareTo(obj)>0) {
i--s

}
t heLi st. add(j, obj);

Insertion Sort

This technique can be the basis of a simple sort
algorithm

initialize the sorted part to be enpty
for each itemin the |ist
copy the tail of the list down until we find
the correct spot for the itemin the sorted part
insert the itemin the correct position

} the list is now sorted
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this part is now sorted
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* Insertion sort is used as the bottom level of many other
sorting routines, so you will see this implemented in a
variety of forms if you study sorting algorithms

8-August-2003 csel42-20a-sort © 2003 University of Washington 8




Insertion Sort Characteristics

* Running time
» Worst case is proportional to N2
* reverse order input
* must copy every element every time
» Best case is proportional to N
* in-order input
* copy down stops with first comparison every time
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N2 is too slow for big arrays

» There are better sort algorithms for larger lists
» slightly more complex, so there is more overhead
» Improvement is often sensitive to input data

» typically divide the list to be sorted into sub-arrays
and sort those

* the dividing process does some sorting
* insertion sort sub-arrays with less than ~7 elements
» Use the sort methods in Arrays and Collections
to sort large lists
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Conclusion

» Performance Tradeoffs
» Sorting is relatively expensive
» Pays off if searches are frequent and clustered
together compared to additions to the list
e Can either
» maintain lists in sorted order at all times
 add operation is more expensive

» sort when needed for a find operation
« find operation is expensive when it includes a sort
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