Sorting

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

8-August-2003 csel42-20a-sort © 2003 University of Washington 1

Linear vs Binary Search

» Recall work needed to search a list of n items
» Linear search ~n
» Binary search ~log n

 For all but small lists, binary search is much,
much, much faster
» Forn=1,000, logn~10
» For n= 1,000,000, log n~ 20

8-August-2003 csel42-20a-sort © 2003 University of Washington

M e e gl P e R gl

i | o . 5 Wiy a L Kmalans, glnedh

] o = x 7 m m =] £ n T

matlab generated using ex20\showlog.m

Simple sort is easy, fast sort is tricky

* There are lots of possible sorting algorithms
» The speed of the sort may depend on the data
» completely random
» already sorted, sorted but in reverse order
» odd patterns of partially sorted data
» Today's goal
» understand the concept of sorting
» understand that there are good sorters available

8-August-2003 csel42-20a-sort © 2003 University of Washington




Recall addItem from ListManager

» The existing list is already in order
 Find the correct spot for the new item
* Insert the new item in the correct spot

public void addlten(Conparabl e obj) {
int j = theList.size();
while(j > 0 & & ((Conparabl e)thelList.get(j-1)).conpareTo(obj)>0) {
i--s

}
t heLi st. add(j, obj);

Insertion Sort

This technique can be the basis of a simple sort
algorithm

initialize the sorted part to be enpty
for each itemin the |ist
copy the tail of the list down until we find
the correct spot for the itemin the sorted part
insert the itemin the correct position

} the list is now sorted
8-August-2003 csel42-20a-sort © 2003 University of Washington 5 8-August-2003 csel42-20a-sort © 2003 University of Washington 6
unsorted  [7 [ 4 [12 [ 5 [ 19 | 16 |
etz 8 4B public void InsertionSort(int x[]) {
l n for(int p=1; p < x.length; p++ ) {
int j;
ittm1=4 [ 7 [ 4 |12 ] 5 | 19 | 16 | item3=5 [ 4 [ 7 [12] 5 | 19 ] 16 ] int tnp = x[p]; , _
H 2 3 4 5 ) 1 2 3 4 5 for(j=p; j >0 && x[j-1] > tnp;j-- )
copyitm0 [ 7 [ 7 [12[ 5 [19] 16 | copyittm2 [4 [ 7 [12[12 ] 19 16 | ] X[_J] :.X[J-l],
0 1 2 3 4 5 0 1 2 3 4 5 } x[j] = tnp;
insertvalue/\-\’t\7 [12] 5 [19] 16 | copyitem1 [ 4 [ 7 [ 7 [12][19 ] 16 | }
0 1 2 3 4 5 0 1 2 3 4 5

l insenvaluem [ 7 [12]19 16|
o 1 2 3 4 s

this part is now sorted
L\ & P

ittm2=12 [ 4 [ 7 [12 ]| 5 [19] 16 |
0 1 2 3 4 5

8-August-2003 csel42-20a-sort © 2003 University of Washington 7

* Insertion sort is used as the bottom level of many other
sorting routines, so you will see this implemented in a
variety of forms if you study sorting algorithms

8-August-2003 csel42-20a-sort © 2003 University of Washington 8




Insertion Sort Characteristics

* Running time
» Worst case is proportional to N2
* reverse order input
* must copy every element every time
» Best case is proportional to N
* in-order input
* copy down stops with first comparison every time

8-August-2003 csel42-20a-sort © 2003 University of Washington

N2 is too slow for big arrays

» There are better sort algorithms for larger lists
» slightly more complex, so there is more overhead
» Improvement is often sensitive to input data

» typically divide the list to be sorted into sub-arrays
and sort those

* the dividing process does some sorting
* insertion sort sub-arrays with less than ~7 elements
» Use the sort methods in Arrays and Collections
to sort large lists

8-August-2003 csel42-20a-sort © 2003 University of Washington 10

Conclusion

» Performance Tradeoffs
» Sorting is relatively expensive
» Pays off if searches are frequent and clustered
together compared to additions to the list
e Can either
» maintain lists in sorted order at all times
 add operation is more expensive

» sort when needed for a find operation
« find operation is expensive when it includes a sort

8-August-2003 csel42-20a-sort © 2003 University of Washington

11




