
6-Aug-2003 cse142-19-search © 2003 University of Washington 1

Searching

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

6-Aug-2003 cse142-19-search © 2003 University of Washington 2

Readings and References

• Reading
» Sections 13.1 through 13.3, Intro to Programming and

Object-Oriented Design Using Java, Niño and Hosch

6-Aug-2003 cse142-19-search © 2003 University of Washington 3

Searching a List

• Assume that we’ve got a list, and some
collection of strings has been added to the list

• Problem: Look for a name in the list
» If found, report its position
» If not found, report -1

ArrayList names = new ArrayList();
names.add(“frog”);
names.add(“rabbit”);
names.add(“aardvark”);

6-Aug-2003 cse142-19-search © 2003 University of Washington 4

Linear Search

• Locate a string in a list
• We can do this!

» how can we look at each element in turn?

» how do we check if it's what we want?

» what do we do when we get it?

6-Aug-2003 cse142-19-search © 2003 University of Washington 5

Linear Search implementation

6-Aug-2003 cse142-19-search © 2003 University of Washington 6

Can we do better?

• How much work does linear search do?
• Can we do it faster?

» No, if we don’t know anything about the order of
elements in the list

» Yes, if the list is sorted

6-Aug-2003 cse142-19-search © 2003 University of Washington 7

Binary Search – Informal

• If the list is sorted, we can use that knowledge
to speed up how we search
» think about the phonebook - do you do a linear

search when looking up a name?
• Idea

» Look in the middle of the list
» If we haven’t found what we’re looking for, we

can ignore half of the list and look at the other half

6-Aug-2003 cse142-19-search © 2003 University of Washington 8

Binary Search – Goal

• Goal (more formally)
» Want to find the point in the list such that

everything to the left is <= the string we’re
searching for and everything to the right is >

• Picture:

6-Aug-2003 cse142-19-search © 2003 University of Washington 9

Binary Search – Strategy

• On a typical iteration, we have

• Idea:
» Let mid = (L+R)/2
» If names.get(mid) <= str, move L
» If names.get(mid) > str, move R

 0 L R size()

names <= str > str

mid

6-Aug-2003 cse142-19-search © 2003 University of Washington 10

String Comparisons

• We need to compare Strings to determine
ordering, not just equality
» Can’t use <, <=, etc. on objects

• Solution: method compareTo in class String
s.compareTo(t)

returns
negative integer if s is before t alphabetically
zero if s is equal to t alphabetically
positive integer if s is after t alphabetically

6-Aug-2003 cse142-19-search © 2003 University of Washington 11

A binary search implementation
public Object findItem(Comparable key) {

int low = 0;
int high = theList.size()-1;

while (low <= high) {
int mid = (low + high) / 2;
Object midVal = theList.get(mid);
int cmp = ((Comparable)midVal).compareTo(key);

if (cmp < 0)
low = mid + 1;

else if (cmp > 0)
high = mid - 1;

else
return midVal; // key found

}
return null; // key not found

}

6-Aug-2003 cse142-19-search © 2003 University of Washington 12

Binary Search – Performance

• Is the extra complexity worth it?
• How much work is done to search a list of a

given size?
• or, How big a list can be searched with n

comparisons?

6-Aug-2003 cse142-19-search © 2003 University of Washington 13

Binary & Linear Search Compared
• Linear search: work ~ size
• Binary search: work ~ log2 size

» This is a fundamental difference – not just a
constant speedup.

• Graph:

