Readings and References • Reading » Sections 13.1 through 13.3, Intro to Programming and Searching Object-Oriented Design Using Java, Niño and Hosch CSE 142, Summer 2003 **Computer Programming 1** http://www.cs.washington.edu/education/courses/142/03su/ 2 6-Aug-2003 cse142-19-search © 2003 University of Washington 6-Aug-2003 cse142-19-search © 2003 University of Washington Linear Search Searching a List • Assume that we've got a list, and some • Locate a string in a list collection of strings has been added to the list • We can do this! » how can we look at each element in turn? ArrayList names = new ArrayList(); names.add("frog"); names.add("rabbit"); names.add("aardvark"); » how do we check if it's what we want? • Problem: Look for a name in the list » what do we do when we get it? » If found, report its position » If not found, report -1 3 6-Aug-2003 cse142-19-search © 2003 University of Washington 6-Aug-2003 cse142-19-search © 2003 University of Washington 4

Linear Search implementation	Can we do better?	
	• How much work does linear search do?	
	• Can we do it faster?	
	» No, if we don't know anything about the order of elements in the list	
	» Yes, if the list is sorted	
6-Aug-2003 cse142-19-search © 2003 University of Washington 5	6-Aug-2003 cse142-19-search © 2003 University of Washington 6	
Binary Search – Informal	Binary Search – Goal	
 Binary Search – Informal If the list is sorted, we can use that knowledge 	Binary Search – Goal • Goal (more formally)	
 Binary Search – Informal If the list is sorted, we can use that knowledge to speed up how we search Think about the phonebook - do you do a linear 	 Binary Search – Goal Goal (more formally) Want to find the point in the list such that everything to the left is <= the string we're 	
 Binary Search – Informal If the list is sorted, we can use that knowledge to speed up how we search » think about the phonebook - do you do a linear search when looking up a name? 	 Binary Search – Goal Goal (more formally) Want to find the point in the list such that everything to the left is <= the string we're searching for and everything to the right is > 	
 Binary Search – Informal If the list is sorted, we can use that knowledge to speed up how we search think about the phonebook - do you do a linear search when looking up a name? Idea 	 Binary Search – Goal Goal (more formally) Want to find the point in the list such that everything to the left is <= the string we're searching for and everything to the right is > Picture: 	
 Binary Search – Informal If the list is sorted, we can use that knowledge to speed up how we search think about the phonebook - do you do a linear search when looking up a name? Idea Look in the middle of the list 	 Binary Search – Goal Goal (more formally) Want to find the point in the list such that everything to the left is <= the string we're searching for and everything to the right is > Picture: 	

Binary Search – Strategy

String Comparisons

- We need to compare Strings to determine ordering, not just equality
 - » Can't use <, <=, etc. on objects
- Solution: method compareTo in class String
 s.compareTo(t)

negative integer if \mathbf{s} is before \mathbf{t} alphabetically zero if \mathbf{s} is equal to \mathbf{t} alphabetically positive integer if \mathbf{s} is after \mathbf{t} alphabetically

cse142-19-search © 2003 University of Washington

10

Binary Search – Performance

- Is the extra complexity worth it?
- How much work is done to search a list of a given size?

cse142-19-search © 2003 University of Washington

• or, How big a list can be searched with *n* comparisons?

12

Binary & Linear Search Compared

- Linear search: work ~ size
- Binary search: work ~ log₂ size
 - » This is a *fundamental* difference not just a constant speedup.
- Graph:

6-Aug-2003	cse142-19-search © 2003 University of Washington	13