
4-August-2003 cse142-18-iterators © 2003 University of Washington 1

Iterators and Collections

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

4-August-2003 cse142-18-iterators © 2003 University of Washington 2

Readings and References

• Reading
» The discussion in Intro to Programming and Object-

Oriented Design Using Java, Niño and Hosch is about
their own home-grown Lists and Iterators, not the ones in
java.util

• Other References
» The Java tutorial on Collections

• http://java.sun.com/docs/books/tutorial/collections/index.html

4-August-2003 cse142-18-iterators © 2003 University of Washington 3

Java fundamentals
• Object oriented programming

» classes and objects
» interfaces and inheritance
» constructors, methods, variables

• The Java language
» types, expressions
» control flow
» exceptions

• Development tools
» editors, compiler, Java virtual machine

4-August-2003 cse142-18-iterators © 2003 University of Washington 4

Java data structures

• Arrays
» can hold primitive types directly

• ArrayLists
» representative of the many Collection types

• but these are only the beginning
» Java provides many well designed interfaces,

implementations, and algorithms to help you
manage your data

4-August-2003 cse142-18-iterators © 2003 University of Washington 5

Collection interface

•Interfaces, Implementations, and Algorithms
•From Thinking in Java, page 462

Collection

4-August-2003 cse142-18-iterators © 2003 University of Washington 6

java.util.Collection Interface

• Collection is the root interface in the collection
hierarchy
» A collection represents a group of objects (the

elements of the collection)
» Some collections allow duplicate elements and

others do not
» Some collections are ordered and others are

unordered

4-August-2003 cse142-18-iterators © 2003 University of Washington 7

Collection interface methods

• Defines two fundamental methods
» boolean add(Object o)
» Iterator iterator()

• These two methods are enough to define the
basic behavior of a collection

• An Iterator lets you step through the elements
in the Collection without knowing the index

4-August-2003 cse142-18-iterators © 2003 University of Washington 8

Iterator interface

Iterator

ListIterator

4-August-2003 cse142-18-iterators © 2003 University of Washington 9

Iterator Interface
• Defines fundamental methods

» Object next()
» boolean hasNext()

• These methods provide access to the
contents of the collection

• An Iterator knows position within collection
• Each call to next() gets the next element

from the collection

4-August-2003 cse142-18-iterators © 2003 University of Washington 10

Iterator Position with next()

4-August-2003 cse142-18-iterators © 2003 University of Washington 11

List and Set interfaces

Set List

Collection

4-August-2003 cse142-18-iterators © 2003 University of Washington 12

List and Set
• public interface List extends Collection

» An ordered collection (also known as a sequence)
» User can store and access elements by their integer

index and search for elements in the list
» Lists typically allow duplicate elements

• public interface Set extends Collection

» A collection that contains no duplicate elements
and at most one null element

» Models the mathematical set abstraction

4-August-2003 cse142-18-iterators © 2003 University of Washington 13

Concrete classes that implement List

ArrayList

 List

LinkedList

4-August-2003 cse142-18-iterators © 2003 University of Washington 14

ArrayList and LinkedList
• ArrayList

» fast access to any element in the List by index
» implemented with an array of Objects, ie, Object[]
» automatically increases array size when needed
» add at the end is fast, but add in the front requires

copying the entire array to make room
• LinkedList

» fast insert and delete at any point in a list
» slow if you want to access elements by index

4-August-2003 cse142-18-iterators © 2003 University of Washington 15

Concrete classes that implement Set

HashSet

 Set

TreeSet

4-August-2003 cse142-18-iterators © 2003 University of Washington 16

HashSet and TreeSet

• HashSet
» Like all Collections, a HashSet stores objects
» This class offers constant time performance for the

basic operations (add, remove, contains and size)
» No guarantee as to the order of the elements

• TreeSet
» Guarantees that the set will be sorted in ascending

element order

4-August-2003 cse142-18-iterators © 2003 University of Washington 17

Example - CollectionManager
import java.util.*;
public class CollectionManager {
public void fillCollection(Collection c) {
System.out.println("\nFilling "+c.getClass().getName());
for (int i=4; i >= 0; i--) {
c.add(i + " * " + i + " = "+i*i); // first entry
c.add(i + " * " + i + " = "+i*i); // duplicate entry

}
}
public void printCollection(Collection c) {
Iterator iter = c.iterator();
while (iter.hasNext()) {
System.out.println(iter.next());

}
}

}

4-August-2003 cse142-18-iterators © 2003 University of Washington 18

Iterators vs Indexed Access

• We can process an ArrayList using get(index)

• Tradeoffs
» Iterators are more general – work on all collections, even if

the collection doesn’t support indexed access
» Iterators only support traversal of a collection from one

element to the next (or previous) – if we want to go in
some other arbitrary order, we need indexed access

for (int k = 0; k < names.size(); k++) {
process names.get(k);

}

