
30-July-2003 cse142-16-arraylists © 2003 University of Washington 1

ArrayLists

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

30-July-2003 cse142-16-arraylists © 2003 University of Washington 2

How can we manage lists of objects?

• We need a class that will let us ...
» add things to the list
» look at the elements of the list one by one
» find out how many things have been put in the list
» remove things from the list
» … among other things

• Simple arrays are one way to do this
• ArrayLists are another way to do this

30-July-2003 cse142-16-arraylists © 2003 University of Washington 3

An Ordered Collection: ArrayList

• ArrayList is a Java class that specializes in
representing an ordered collection of things

• The ArrayList class is defined in the Java libraries
» part of the java.util package

• We can store any kind of object in an ArrayList
» myList.add(theDog);
» but not primitive types like int, double, or boolean

• We can retrieve an object from the ArrayList by
specifying its index number
» myList.get(0)

30-July-2003 cse142-16-arraylists © 2003 University of Washington 4

ArrayList
• ArrayList()

» This constructor builds an empty list with an initial
capacity of 10

• int size()

» This method returns the number of elements in this list
• boolean add(Object o)

» This method appends the specified element to the end of
this list and increases the size of the array if needed

• Object get(int index)

» This method returns the element at the specified position

30-July-2003 cse142-16-arraylists © 2003 University of Washington 5

Using ArrayLists

• ArrayList is part of the java.util package
» import java.util.*; to use ArrayList

• Creating a list
• ArrayList names = new ArrayList();

• Adding things
• names.add("Billy");

• names.add("Susan");
• names.add("Frodo");

• Getting the size
• int numberOfNames = names.size();

30-July-2003 cse142-16-arraylists © 2003 University of Washington 6

Using ArrayLists : import

• ArrayList is part of the java.util package
» import java.util.ArrayList; to use ArrayList

• The import statement tells the Java compiler
where to look when it can’t find a class
definition in the local directory
» We tell the compiler to look in package java.util

for the definition of ArrayList by putting an
import statement at the top of the source code file

» Java always looks in package java.lang on its own

30-July-2003 cse142-16-arraylists © 2003 University of Washington 7

Using ArrayLists : constructor

• Creating a new ArrayList object
ArrayList names = new ArrayList();

• There are several constructors available
» ArrayList()

• Construct an empty list with an initial capacity of 10
» ArrayList(int initialCapacity)

• Construct an empty list with the specified initial capacity
» ArrayList(Collection c)

• Construct a list containing elements from another collection

30-July-2003 cse142-16-arraylists © 2003 University of Washington 8

Using ArrayLists : size

• Getting the size

int numberOfNames = names.size();

• size() method returns integer value that caller
can use to control looping, check for limits, etc
» Design pattern: The object keeps track of relevant

information, and can tell the caller when there is a
need to know

30-July-2003 cse142-16-arraylists © 2003 University of Washington 9

Using ArrayLists : add

• Adding things
names.add("Billy");

• add(Object o) method adds an object to the list
at the end of the list

• The object can be of any class type
» String, File, InputStream, …
» can’t add “primitive” types like int or double directly

• Can use the wrapper classes like Integer to store
primitives

30-July-2003 cse142-16-arraylists © 2003 University of Washington 10

So now what?

• We can create a list, and we can add items to it.
• But we need to get them out, too!
• Use the get(int index) method to retrieve

references to objects in the ArrayList

String tag = (String)names.get(0);

• But there are just a few little details to be
worked out ...

30-July-2003 cse142-16-arraylists © 2003 University of Washington 11

Using ArrayLists: get

• ArrayLists provide indexed access
» We can ask for the ith item of the list, where the

first item is at index 0, the second at index 1, and
the last item is at index n-1 (where n is the size of
the collection).

ArrayList names = new ArrayList();
names.add("Billy");
names.add("Susan");
Object x = names.get(0);
Object y = names.get(1);

30-July-2003 cse142-16-arraylists © 2003 University of Washington 12

A Problem
• We want to get things out of an ArrayList
• We might write the following:

public void printFirstNameString(ArrayList names) {

String name = names.get(0);

System.out.println("The first name is " + name);

}

• But the compiler complains at the green line:
» incompatible types:
» found : java.lang.Object
» required: java.lang.String

30-July-2003 cse142-16-arraylists © 2003 University of Washington 13

Object (as the name of a class)
• The return type of the method get() is Object.
• Think of Object as Java's way of saying "any

type of class"
• All classes in Java have an "is-a" relationship

to Object. In other words:
» every String is an Object
» every Rectangle is an Object
» every ArrayList is an Object

• Object is the “mother of all classes”

30-July-2003 cse142-16-arraylists © 2003 University of Washington 14

Object (as the name of a class)

• This is a new usage of the word Object for us
• "Object" refers to a class named Object

» "Object" is a class name with a capital "O"
• "object" refers to a little blob of memory, an

instance of some class that was created with
the new operator
» an "object" is a thing that was created at run time

• These are two entirely different meanings

30-July-2003 cse142-16-arraylists © 2003 University of Washington 17

Making Promises: Casting
• The solution to our get() problem is to make a

promise
» We know that we've only placed String objects

into the ArrayList. We can promise the compiler
that the thing coming back out of the ArrayList is
actually a String:

• This promise is called a cast

public void printFirstNameString(ArrayList names) {
String name = (String)names.get(0);
System.out.println("The first name is " + name);

}

30-July-2003 cse142-16-arraylists © 2003 University of Washington 18

Casting
• The pattern is

» (<class-name>)<expression>
• For example

• String name = (String)names.get(0);

• Casting an object does not change the type of
the object

• A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

30-July-2003 cse142-16-arraylists © 2003 University of Washington 19

The Collections Class

• There is a class called java.util.Collections
» utility functions for using classes that implement the

Collection interface
» This class consists exclusively of static methods that

operate on or return collections. It contains
polymorphic algorithms that operate on collections,
"wrappers", which return a new collection backed by
a specified collection, and a few other odds and ends.

» These are static methods so they exist and can be
used without creating an object first

30-July-2003 cse142-16-arraylists © 2003 University of Washington 20

Useful methods in Collections class

• static void sort(List list)
» Sorts the specified list into ascending order,

according to the natural ordering of its elements.
» "natural order" is defined when you implement the

interface Comparable
• static void sort(List list, Comparator c)

» Sorts the specified list according to the order induced
by the specified comparator

» Comparator lets you define several different orders

