
28-July-2003 cse142-15-arrays © 2003 University of Washington 1

Arrays

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

28-July-2003 cse142-15-arrays © 2003 University of Washington 2

Readings and References

• Reading
» Section 22.1, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch

• Other References
» "Arrays", Java tutorial

• http://java.sun.com/docs/books/tutorial/java/data/arrays.html

» Popular Baby Names from Social Security Administration
• http://www.ssa.gov/cgi-bin/babynames.cgi

28-July-2003 cse142-15-arrays © 2003 University of Washington 3

Collections in the Real World
• Think about:

» words in a dictionary
» list of pets in your household
» deck of cards
» books in a library
» songs on a CD

• These things are all collections.
• Some collections are ordered, others are

unordered
28-July-2003 cse142-15-arrays © 2003 University of Washington 4

How can we manage lists of objects?

• We need a class that will let us ...
» add things to the list
» look at the elements of the list one by one
» find out how many things have been put in the list
» remove things from the list
» … among other things

28-July-2003 cse142-15-arrays © 2003 University of Washington 5

PetSet example

• Think about PetSet in homework 2
» There were two animal objects in the distributed

version of PetSet
» You designed a new type of animal, and then created

at least one new object of this new type
» In order to manage the activities of the new animal

you had to change the source code in PetSet
• Changing source code in order to implement

variations in the data set is costly and inflexible
28-July-2003 cse142-15-arrays © 2003 University of Washington 6

PetSet example

• It would be nice if we could somehow keep track
of the objects in a more general way

private Cat cat;
private Dog dog;

public void dine() {
cat.eat(cat.getMealSize()*2);
dog.eat(dog.getMealSize()*2);

}

28-July-2003 cse142-15-arrays © 2003 University of Washington 7

Arrays

• Java (and many other languages) include
arrays as the most basic kind of collection.
» Simple, ordered collections
» Special syntax for declaring values of array type
» Special syntax for accessing elements by position
» The size is fixed when the array is created
» Can specify the type of the elements of arrays

28-July-2003 cse142-15-arrays © 2003 University of Washington 8

Array Example
public class ArraySample {

String[] names;

public ArraySample() {

names = new String[3];

names[0] = "Sally";

names[1] = "Splat";

names[2] = "Google";

for (int i=0; i<names.length; i++) {

System.out.println("Name "+i+" is "+names[i]);

}

}

}

28-July-2003 cse142-15-arrays © 2003 University of Washington 9

Array Example
ArrayExample

names

String[]

index 0

index 1

index 2

String
"Sally"

String
"Splat"

String
"Google"

length : 3

28-July-2003 cse142-15-arrays © 2003 University of Washington 10

Java Array Object

• Arrays are objects! They...
» Must be instantiated with new unless immediately

initialized
» Can contain primitive types or references to objects
» Have class members (length, clone(),…)
» Have zero-based indexes
» Throw an exception if bounds are exceeded

28-July-2003 cse142-15-arrays © 2003 University of Washington 11

Array Declaration and Creation

• Array have special type and syntax:
<element type>[] <array name> = new <element type> [<length>];

• Arrays can only hold elements of the specified type
» element type can be a reference type (ie, objects)
» element type can be int, double, etc.

• <length> is any positive integer expression
• Elements of newly created arrays are initialized

» but generally you should provide explicit initialization

• Arrays have an instance variable that stores the length
<array name>.length

28-July-2003 cse142-15-arrays © 2003 University of Washington 12

Declaring and Allocating Arrays

• Declare an Array of ten String references
String[] myArray = new String[10];

• Declare an array and initialize elements
» the compiler counts the number of elements in this case
String[] myArray = { “Java”,”is”,”cool”};

• Declare, initialize, and use an array
» this is an "anonymous" array
boolean okay = doLimitCheck(x,new int[] {1,100});

28-July-2003 cse142-15-arrays © 2003 University of Washington 13

Array Element Access
• Access an array element using the array name

and position: <array name> [<position>]
• Details:

» <position> is an integer expression.
» Positions count from zero
» Type of result is the element type of the array

• Can update an array element by assigning to it:
<array name> [<position>] = <new element value> ;

names[1] = "Splat"; return names[idx];

28-July-2003 cse142-15-arrays © 2003 University of Washington 14

NameList example
public class NameList {

private String[] theBook = {
"Jacob","Michael","Joshua","Matthew","Emily",
"Ethan","Joseph","Andrew","Christopher","Madison",
"Daniel","Nicholas","William","Anthony","Hannah",
"David","Tyler","Alexander","Ryan","John"};

private String[] names;

public NameList(int count) {
names = new String[count];
int span = theBook.length;
for (int i=0; i<names.length; i++) {

names[i] = theBook[(int)(Math.random()*span)];
}

}
...

28-July-2003 cse142-15-arrays © 2003 University of Washington 15

Looping Over Array Contents

• The length attribute makes looping over
Array objects easy:

for (index=0; index<myArray.length; index++) {
System.out.println(myArray[index]);

}

• The length attribute is a read-only value
» You can't change the size of the array after it

has been created
28-July-2003 cse142-15-arrays © 2003 University of Washington 16

Passing Array Objects to Methods

• Method parameters can be Arrays:
public static void main(String[] args)

• Arrays are objects and so you are passing a
reference when you call a method with an array
» This means array contents can be changed by methods
» This may be what you want, but if not, you need to

make sure that other methods only get a copy of your
array and the elements in it

28-July-2003 cse142-15-arrays © 2003 University of Washington 17

Array Summary

• Arrays are the fundamental low-level collection
type built in to the Java language.
» Also found in essentially all programming languages

• Size fixed when created
• Indexed access to elements
• Used to implement higher-level, richer container

types
» ArrayList for example

28-July-2003 cse142-15-arrays © 2003 University of Washington 18

The Arrays Class

• There is also a class called java.util.Arrays
» Note the capital A, this is a class name
» part of package java.util
» utility functions for using arrays

• search
• sort
• initialize

» These are static methods so they exist and can be
used without creating an object first

