
21-July-2003 cse142-13-interfaces © 2003 University of Washington 1

Interfaces

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

21-July-2003 cse142-13-interfaces © 2003 University of Washington 2

Readings and References

• References
» The Java Tutorial on Interfaces

http://java.sun.com/docs/books/tutorial/java/interpack/interfaces.html

21-July-2003 cse142-13-interfaces © 2003 University of Washington 3

Classes Reviewed

• The basic unit of programming in Java is a
class definition
» The class specifies properties and responsibilities
» Individual objects are created as needed
» All objects of the same class have the same list of

properties and responsibilities
» Properties can contain simple values or be

references to other objects
• Every object is an instance of some class
• Each class defines a new type

21-July-2003 cse142-13-interfaces © 2003 University of Washington 4

Recall the specification of an Acrobat

You are an Acrobat

When you are asked to Clap, you will be given a number.
Clap your hands that many times.

When you are asked to Twirl, you will be given a number.
Turn completely around that many times.

When you are asked to Count, announce how many actions you
have performed. This is the sum of the numbers you have been
given to date.

21-July-2003 cse142-13-interfaces © 2003 University of Washington 5

Can Dogs be Acrobats too?

• The essence of an Acrobat being is that it can
Clap, Twirl, and Count

• Any class of beings that can Clap, Twirl, and
Count could satisfy our needs

• We might want to add these capabilities to a
class like Dog (probably not Cat, I would say)
» It’s still a Dog, but we want it be a performer too

21-July-2003 cse142-13-interfaces © 2003 University of Washington 6

Responsibilities

• The problem is that we have two lists of
responsibilities
» Dog : eat, getMealSize, getCurrentWeight
» Acrobat : clap, twirl, getEventCount

• We can add Acrobat methods to the Dog class
» Does that make a Dog into an Acrobat in the eyes

of the Ringmaster?

21-July-2003 cse142-13-interfaces © 2003 University of Washington 7

“I can do the Acrobat thing”

• What we need is something that is true of any
class that can do the right things

• Every Acrobat can clap, twirl, and getEventCount
• So if a class could promise:

» I can clap, twirl, and keep track of how many times
I've done something

• then we would be able to tell other classes
» this class can do the Acrobat thing for you

21-July-2003 cse142-13-interfaces © 2003 University of Washington 8

public interface

• The Java interface is a very nice way to tell
other classes exactly what your class can do
» "these are the responsibilities I have implemented"

• The class is saying "I can do Acrobat functions"
as opposed to saying "I am an Acrobat"

• Any class that implements the Acrobat interface
guarantees that it has methods for all the things
that any Acrobat must do

21-July-2003 cse142-13-interfaces © 2003 University of Washington 9

public interface Acrobat
/**

* This interface defines the methods that a class must implement

* in order to be considered an Acrobat.

*/

public interface Acrobat {

/**

* Twirl around as instructed.

* @param k the number of times to twirl

*/

public void twirl(int k);

/**

* Clap as instructed.

* @param k the number of times to clap

*/

public void clap(int k);

/**

* Tell the caller how many things we've done so far.

* @return the number of claps and twirls to date

*/

public int getActionCount();

}

21-July-2003 cse142-13-interfaces © 2003 University of Washington 10

using an interface in a class definition

• Each of the classes that wants to be considered
for an Acrobat role must say so at the very
beginning of the class definition

• You are telling the compiler that this class
guarantees that it will implement all the
methods that are required in the interface

public class Student implements Acrobat {...}
public class Dog implements Acrobat {...}

21-July-2003 cse142-13-interfaces © 2003 University of Washington 11

What is the guarantee?
/**

* This interface defines the methods that a class must implement

* in order to be considered an Acrobat.

*/

public interface Acrobat {

/**

* Twirl around as instructed.

* @param k the number of times to twirl

*/

public void twirl(int k);

/**

* Clap as instructed.

* @param k the number of times to clap

*/

public void clap(int k);

/**

* Tell the caller how many things we've done so far.

* @return the number of claps and twirls to date

*/

public int getActionCount();

}

Each of these methods is available
in the implementing class.

21-July-2003 cse142-13-interfaces © 2003 University of Washington 12

Anybody can be an Acrobat

• Note that we no longer have an Acrobat class
• Instead we have an Acrobat interface, that any

class can implement
» public class Student implements Acrobat

• re-titled version of the old Acrobat
• same methods as before

» public class Dog implements Acrobat

• updated version of the old Dog
• same methods as before, plus the Acrobat methods

21-July-2003 cse142-13-interfaces © 2003 University of Washington 13

Using Acrobat interface in Ringmaster

• Now we can use objects of several different
classes to do Acrobatic things, not just one class

• So the Ringmaster can create a whole crowd of
objects of different types, and ask each of them
to do Acrobat things no matter who they are
» Each class to be used this way must say that it

 implements Acrobat

21-July-2003 cse142-13-interfaces © 2003 University of Washington 14

We're all Acrobats on this bus

Acrobat actA = new Student("Alpha","Broti");
Acrobat actB = new Student("Cheri","Delay");
Acrobat actC = new Dog("Jessie");

actA.clap(3);
actB.twirl(4);
actC.twirl(7);
actA.clap(8);

from Ringmaster.java

21-July-2003 cse142-13-interfaces © 2003 University of Washington 15

But I'm more than just an Acrobat ...
• Sometimes we want to access some of the

special skills of the object, because we know
that there are hidden talents

• Java lets us cast the object to another type

• The programmer (you) is telling the compiler
» trust me, it really is a Dog and it can do more than

just the Acrobat responsibilities

double weight = ((Dog)actC).getCurrentWeight();

21-July-2003 cse142-13-interfaces © 2003 University of Washington 16

Cast to Dog
• Tell the compiler that this reference is to a Dog

» a Dog can do much more than just be an Acrobat

double weight = ((Dog)actC).getCurrentWeight();

double weight = ((Dog)actA).getCurrentWeight();

• If you tell the compiler that the object is a Dog,
but then it actually turns out to be a Student,
the program will stop with an error

good idea,
actC actually
is a Dog

bad idea,
actA is not
a Dog

