
18-July-2003 cse142-12-scope © 2003 University of Washington 1

Scope

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

18-July-2003 cse142-12-scope © 2003 University of Washington 2

Readings and References

• Reading
» Section 14.7, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch

18-July-2003 cse142-12-scope © 2003 University of Washington 3

Declarations

• Everything in a Java program is referenced
using an identifier (name)

• Names must be declared in the source code
» Methods and instance variables in a class
» Parameters and local variables in constructors and

methods of the class

18-July-2003 cse142-12-scope © 2003 University of Washington 4

Variables
• A variable is

» a portion of memory reserved to hold a single value
• Our program uses little chunks of memory to

store the values that it is working with
» The program refers to each chunk by name, the

name of the variable
» When we declare a variable, we give it a name and

a type

Variable declarations
public class Road implements Prop {

/** reference to the GWindow object we're displayed on */

private GWindow gw;
/** centerline of the road */

private Shape centerLine;

[…snip…]

/**

* Construct the surface and the centerline of the road given the parameters.

* @param x the x-coordinate of the upper left corner of the road

* […snip…]

*/

public Road(int x, int y, int width, int height, boolean east_west) {

surface = new Rectangle(x, y, width, height, Color.black, true);

// create the center line

int centerLineX1;
centerLineX1 = cornerX;

[…snip…]

}

/**

* Add the elements of this display object to the graphics window.

* @param g the graphics window to use

*/

public void addTo(GWindow g) {

gw = g;

surface.addTo(gw);

centerLine.addTo(gw);

} […snip…]

constructor parameter

method parameter

local variable

instance variable

18-July-2003 cse142-12-scope © 2003 University of Washington 6

Lifetime

• We've talked about the lifetime of the variables
» Parameter variables can only be referenced within the

body of the constructor or method and the value is lost
when the constructor or method returns control to the caller

» Local variables can only be referenced within the body of
the constructor or method and the value is lost when the
constructor or method returns control to the caller

» Instance variables can be referenced using their simple
(unqualified) name from within the class and retain their
values as long as the object exists

18-July-2003 cse142-12-scope © 2003 University of Washington 7

Scope

• A variable's scope is the region of a program
within which the variable can be referred to by
its simple (unqualified) name
» Secondarily, scope also determines when the

system creates and destroys memory for the
variable. If you can't access it, you don't need it.

• Scope limits the range of a declaration
» Allows reuse of names (identifiers) in different

parts of the code without conflict

What determines scope?
Location of the declaration within your program establishes the scope

public class MyClass {

instance variable declarations
String clientName;
…
public void doSomething(method parameters) {

}

…

}

local variable declarations
int sum;
…

member
variable
scope

parameter
variable
scope

local
variable
scope

18-July-2003 cse142-12-scope © 2003 University of Washington 9

Members

• The members include fields (instance variables)
and methods

• Declared within a class but outside of any
method or constructor

• The scope of a class member is the entire
declaration of the class.

18-July-2003 cse142-12-scope © 2003 University of Washington 10

Parameter variables

• Parameters are formal arguments to methods
or constructors and are used to pass values into
methods and constructors

• The scope of a parameter is the entire method
or constructor for which it is a parameter

18-July-2003 cse142-12-scope © 2003 University of Washington 11

Local Variables

• Local variables are declared within a block of
code
» for example, in the body of a method, in the

statement block of a for loop

• The scope of a local variable extends from its
declaration to the end of the code block in
which it was declared.

/**
* This class models a Tree using various Shapes. There is a trunk
* and a crown of leaves.
*/

public class Tree implements Prop {
/** The tree trunk */
private Shape trunk;
/** The tree leaves */
private Shape crown;
/** The GWindow on which the Tree is to be drawn */
private GWindow gw;

/**
* Construct a new Tree, including its component shapes.
* @param x the x pixel location of the base of the trunk
* @param y the y pixel location of the base of the trunk
* @param h the height of the trunk. Also used to determine
* the size of the crown.
*/

public Tree(int x, int y, int h) {
int width = h/2;
trunk = new Rectangle(x - width/2, y - h, width, h,

Color.orange, true);
crown = new Oval(x - 3*width/4, y - 3*h/2, 3*width/2, h,

Color.blue, true);
}

...

18-July-2003 cse142-12-scope © 2003 University of Washington 13

Qualified Names

• Member variables (instance variables, methods)
can be referred to with a qualified name
» assuming that access is allowed (eg public)

• The qualifier is the object that contains the
member

refers to the createProps() method in object bob, an instance
of class Director

bob.createProps();

public class Producer {
/**
* Start the program running.
* @param arg ignored
*/
public static void main(String[] arg) {
Director bob = new Director();
bob.createProps();
bob.action();

}
}

public class Director {
/**
* Create a new Director
*/
public Director() {
GWindow frame = new GWindow("Tree Scene");
frame.setExitOnClose();
theStage = new Stage(frame);

}
/**
* Add all the props to the stage.
*/
public void createProps() {
horizon = new Horizon(0, 200, 500, 200);
theStage.addProp(horizon);
sun = new Sun();
theStage.addProp(sun);
treeA = new Tree(200,200,30);
theStage.addProp(treeA);
treeB = new Tree(250,300,40);
theStage.addProp(treeB);

}

18-July-2003 cse142-12-scope © 2003 University of Washington 15

keyword this
• You may want to refer to the current object

» from hw4, Director.java

• You may want to refer to members of the current object
» from hw4, Road.java

public void createProps() {
Road currentRoad;
currentRoad = new Road(0, 90, 500, 70, true); // east-west #1
Car currentCar;
currentCar = new Car(this,(Road)roadList.get(0),'W',40,30,4,Color.white);

public Road(int x, int y, int width, int height, boolean east_west) {
surface = new Rectangle(x, y, width, height, Color.black, true);
cornerX = x;
cornerY = y;
this.width = width;
this.height = height;

18-July-2003 cse142-12-scope © 2003 University of Washington 16

Variable Declaration with Initialization
• A variable declaration can specify an initial

value

• Common for local variables in methods
» use it to create obvious intermediate quantities

• Not common for instance variables
» usually put initialization in the constructor instead

public double area(double diameter) {
double radius = diameter / 2.0;
return Math.PI * radius * radius;

}

18-July-2003 cse142-12-scope © 2003 University of Washington 17

Type checking

• Java helps as much as it can to make sure you use variables the
way you said you were going to when you declared them

• If you said that currentWeight is an int, then Java will
make sure you don’t unintentionally put a double value in it
and lose the fractional part

int currentWeight;

currentWeight = 2;

currentWeight = currentWeight+0.5;

• What should the value of currentWeight be at this point?
» you said it was an integer, why are you adding 0.5 to it?
» the Java compiler decides that this must be a mistake

• error: “possible loss of precision”

18-July-2003 cse142-12-scope © 2003 University of Washington 18

Type casting
• The compiler will tell you if it thinks there's a mistake

currentWeight = currentWeight + (currentWeight*rate);

“possible loss of precision. found double, required int”

• If you are really sure that you know it’s okay, you can tell
the compiler not to worry about it
» “I know there’s a possible loss of precision, don’t fret about it.”

• The mechanism for doing this is called casting
• The type you want the value converted to is placed in

parentheses in front of the value or expression to convert
currentWeight = currentWeight+(int)(currentWeight*rate);

• The compiler will convert the value to int for you
» beware: loss of precision may be a real problem!

18-July-2003 cse142-12-scope © 2003 University of Washington 19

keyword void

• Must specify the type of object returned by a method

• Sometimes we need to specify “nothing is here”
public void createProps() {

horizon = new Horizon(0, 200, 500, 200);
theStage.addProp(horizon);
sun = new Sun();
theStage.addProp(sun);
treeA = new Tree(200,200,30);
theStage.addProp(treeA);
treeB = new Tree(250,300,40);
theStage.addProp(treeB);

}

public String getName() {
return theName;

}

